
Probability and Stochastic Processes

after Erhan Cinlar and Sheldon M. Ross, notes by Billy Fang

1 Introduction to Probability Theory

1.1 Introduction

1.2 Sample Space and Events

sample space (S): set of all possible outcomes of an experiment

event (E): any subset of the sample space; E ⊂ S

union of two events E and F (E ∪ F ): either E or F occurs

intersection of two events E and F (E ∩ F or EF ): both E and F occur

E and F are mutually exclusive if EF = ∅

complement of a set E (Ec): all outcomes in S that are not in E

1.3 Probabilities Defined on Events

probability of an event E (P (E))

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of events E1, E2, . . . that are mutually exclusive,

P

( ∞⋃
n=1

En

)
=

∞∑
n=1

P (En)

1 = P (S) = P (E ∪ Ec) = P (E) + P (Ec)

P (E ∪ F ) = P (E) + P (F )− P (EF )

1.4 Conditional Probabilities

conditional probability that E occurs given that F has occurred: P (E|F ) = P (EF )
P (F ) where P (F ) > 0
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1.5 Independent Events

events E and F are independent if

P (EF ) = P (E)P (F )

⇒ P (E|F ) = P (E) and P (F |E) = F (E)

events E and F are dependent if they are not independent

events E1, E2, . . . , En are independent if for every subset E1′ , E2′ , . . . , Er′ , r ≤ n of those events,

P (E1′E2′ · · ·Er′) = P (E1′)P (E2′) · · ·P (Er′)

pairwise independent events are not necessarily jointly independent

A sequence of success-fail experiments consists of independent trials if for all i1, i2, . . . , in,

P (Ei1Ei2 · · ·Ein) =
n∏
j=1

P (Eij )

where Ei, i ≥ 1 denotes the event that the ith experiment was a success.

1.6 Bayes’ Formula

let F1, F2, . . . , Fn are mutually exclusive events s.t.
⋃n
i=1 Fi = S.

⇒ E =
⋃n
i=1EFi and EFi are mutually exclusive

⇒ P (E) =
∑n
i=1 P (EFi) =

∑n
i=1 P (E|Fi)P (Fi)

P (Fj |E) =
P (EFj)

P (E)
=

P (E|Fj)P (Fj)∑n
i=1 P (E|Fi)P (Fi)

2 Random Variables

2.1 Random Variables

random variables: real-valued functions defined on the sample space

indicator random variable: “categorical,” example:

I =

{
1, if the lifetime of the battery is 2 or more years

0, otherwise

See Example 2.5 on page 23 for a good example

discrete random variables take on either a finite our countable number of possible values

continuous random variables take on a continuum of possible values

cumulative distribution function (cdf) for random variable X is defined for any real number b, −∞ < b <∞ by

F (b) = P{X ≤ b}

2



1. F (b) is a nondecreasing function of b

2. limb→∞ F (b) = F (∞) = 1

3. limb→−∞ F (b) = F (−∞) = 0

Strict inequality: P{X < b} = limh→0+ P{X ≤ b− h} = limh→0+ F (b− h)

2.2 Discrete Random Variables

probability mass function (pmf) of a discrete random variable X:

p(a) = P{X = a}

p(a) is positive for at most a countable number of values of a; if X must assume one of the values x1, x2, . . ., then

p(xi) > 0, i = 1, 2, . . .

p(x) = 0, all other values of x

∞∑
i=1

p(xi) = 1

F (a) =
∑

all xi≤a

p(xi)

2.2.1 The Bernoulli Random Variable

success-failure; X = 1 for success, X = 0 for failure

p(0) = P{X = 0} = 1− p

p(1) = P{X = 1} = p

where p is the probability the trial is a success, 0 ≤ p ≤ 1

Bernoulli random variable X has the pmf above for some p ∈ (0, 1)

2.2.2 The Binomial Random Variable

n independent trials, success with probability p, failure 1− p

binomial random variable X with parameters (n, p): represents the number of successes in the n trials

p(i) =

(
n

i

)
pi(1− p)n−i

for i = 0, 1, . . . , n.
∞∑
i=0

p(i) =

n∑
i=0

(
n

i

)
pi(1− p)n−i = (p+ (1− p))n = 1

Terminology: if X is a binomial random variable with parameters (n, p), “X has a binomial distribution with parameters

(n, p).”
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2.2.3 The Geometric Random Variable

independent trials, each with probability p of success

geometric random variable X with parameter p is the number of trials until first success

p(n) = P{X = n} = (1− p)n−1p

for n = 1, 2, . . .
∞∑
n=1

p(n) = p

∞∑
n=1

(1− p)n−1 = 1

2.2.4 The Poisson Random Variable

X = x ∈ {0, 1, 2, . . .} is a Poisson random variable with parameter λ if for some λ > 0,

p(i) = P{X = i} = e−λ
λi

i!

for i = 0, 1, . . .
∞∑
i=0

p(i) = e−λ
∞∑
i=0

λi

i!
= e−λeλ = 1

(power series)

Poisson random variable may approximate a binomial random variable when n is large and p is small. Suppose X is a

binomial random variable with parameters (n, p) and let λ = np. Then

P{X = i} =
n!

(n− i)!i!
pi(1− p)n−i =

n!

(n− i)!i!

(
λ

n

)i(
1− λ

n

)n−i
=
n(n− 1) · · · (n− i+ 1)

ni
λi

i!

(1− λ/n)n

(1− λ/n)i

For n large and p small,

• (
1− λ

n

)n
=

(
1 +

(
−λ
n

))(−n/λ)(−λ)

≈ e−λ

•
n(n− 1) · · · (n− i+ 1)

ni
≈ 1

•
(1− λ

n
)i ≈ 1

So, P{X = i} ≈ e−λ λ
i

i!

The Multinomial distribution (page 88)

an experiment has r possible outcomes, the ith outcome has probability pi. If n of these experiments are performed and the

outcome of each experiment does not affect any of the other experiments, the probability that the ith outcome appears xi

times for i = 1, . . . , r is
n!

x1!x2! · · ·xr!
px1

1 px2
2 · · · pxrr

where
∑r
i=1 xi = n. The multinomial distribution is a generalization of the binomial distribution.
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2.3 Continuous Random Variables

X is a continuous random variable if there exists a nonnegative function f(x) defined for all x ∈ R, such that for any set

B of real numbers,

P{X ∈ B} =

∫
B

f(x)dx

and f(x) must satisfy

1 = P{X ∈ (−∞,∞)} =

∫ ∞
−∞

f(x)dx

f(x) is the probability density function (pdf) of the random variable X

P{a ≤ X ≤ b} =
∫ b
a
f(x)dx

but P{X = a} =
∫ a
a
f(x)dx = 0

cdf:

F (a) = P{X ∈ (−∞, a]} =

∫ a

−∞
f(x)dx

d

da
F (a) = f(a)

P{a− ε/2 ≤ X ≤ a+ ε/2} =

∫ a+ε/2

a−ε/2
f(x)dx ≈ εf(a)

(f(a) is a measure of how likely it is that the random variable will be near a)

2.3.1 The Uniform Random Variable

uniformly distributed over (0, 1):

f(x) =

{
1, 0 < x < 1

0, otherwise

density function because f(x) ≥ 0 and
∫∞
−∞ f(x)dx =

∫ 1

0
dx = 1

X = x ∈ (0, 1)

P{a ≤ X ≤ b} =

∫ b

a

f(x)dx = b− a

X is a uniform random variable on (α, β) if its pdf is

f(x) =

{
1

β−α , α < x < β

0, otherwise

cdf:

F (a) =

∫ a

−∞
f(x)dx =


0, a ≤ α
a−α
β−α , α < a < β

1, a ≥ β
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2.3.2 Exponential Random Variables

exponential random variable with parameter λ > 0 has pdf:

f(x) =

{
λe−λx, x ≥ 0

0, x < 0

cdf:

F (a) =

∫ a

0

λe−λxdx = 1− e−λa, a ≥ 0

2.3.3 Gamma Random Variables

a gamma random variable with shape parameter α and rate parameter λ has pdf:

f(x) =

{
λe−λx(λx)α−1

Γ(α) , x ≥ 0

0, x < 0

where the gamma function is defined by

Γ(α)

∫ ∞
0

e−xxα−1dx

for n ∈ Z,

Γ(n) = (n− 1)!

2.3.4 Normal Random Variables

if X is a normal random variable with parameters µ and σ2, pdf:

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, x ∈ R

transformation: if X ∼ N (µ, σ2) then Y = αX + β ∼ N (αµ+ β, α2σ2)

Proof:

Suppose α > 0

FY (a) = P{Y ≤ a}

= P{αX + β ≤ a}

= P{X ≤ a− β
α
}

= FX(
a− β
α

)∫ (a−β)/α

−∞

1

σ
√

2π
e−(x−µ)2/2σ2

dx

=

∫ a

−∞

1

ασ
√

2π
exp

{
−(v − (αµ+ β))2

2α2σ2

}
dv

=

∫ a

−∞
fY (v)dv

(change of variables v = αx+ β)

Similar if α < 0
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standard normal distribution: N (0, 1)

standardizing: if X ∼ N (µ, σ2), then Y = (X − µ)/σ ∼ N (0, 1)

2.4 Expectation of a Random Variable

2.4.1 The Discrete Case

expected value of X:

E[X] =
∑

x:p(x)>0

xp(x)

Expectation of a Bernoulli random variable with parameter p:

E[X] = 0(1− p) + 1(p) = p

Expectation of a binomial random variable with parameters n and p:

E[X] =

n∑
i=0

ip(i)

=

n∑
i=0

i

(
n

i

)
pi(1− p)n−i

=

n∑
i=1

n!

(n− i)!(i− 1)!
pi(1− p)n−i (note: when i = 0, the whole addend is 0)

= np

n∑
i=1

(n− 1)!

(n− 1)!(i− 1)!
pi−1(1− p)n−i

= np

n−1∑
k=0

(
n− 1

k

)
pk(1− p)n−1−k

= np(p+ (1− p))n−1

= np

where k = i− 1.

Expectation of a geometric random variable with parameter p:

E[X] =

∞∑
n=1

np(1− p)n−1 = p

∞∑
n=1

nqn−1

where q = 1− p,

= p

∞∑
n=1

d

dq
(qn) = p

d

dq

( ∞∑
n=1

qn

)
= p

d

dq

(
q

1− q

)
=

p

(1− q)2
=

1

p

Expectation of a Poisson random variable with parameter λ:

E[X] =

∞∑
i=0

ie−λλi

i!
=

∞∑
i=1

e−λλi

(i− 1)!
= λe−λ

∞∑
i=1

λi−1

(i− 1)!
= λe−λ

∞∑
k=0

λk

k!
= λe−λeλ = λ
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2.4.2 The Continuous Case

E[X] =

∫ ∞
−∞

xf(x)dx

Expectation of a uniform random variable distributed over (α, β):

E[X] =

∫ β

α

x

β − α
dx =

β2 − α2

2(β − α)
=
β + α

2

Expectation of an exponential random variable with parameter λ:

E[X] =

∫ ∞
0

xλe−λxdx

integration by parts with dv = λe−λx, u = x,

= −xe−λx
∣∣∞
0

+

∫ ∞
0

e−λxdx

= 0− e−λx

λ

∣∣∞
0

=
1

λ

Expectation of a normal random variable X ∼ N (µ, σ2):

E[X] =
1

σ
√

2π

∫ ∞
−∞

xe−(x−µ)2/2σ2

dx

writing x as (x− µ) + µ,

E[X] =
1

σ
√

2π

∫ ∞
−∞

(x− µ)e−(x−µ)2/2σdx+
µ

σ
√

2π

∫ ∞
−∞

e−(x−µ)2/2σ2

dx

let y = x− µ

E[X] =
1

σ
√

2π

∫ ∞
−∞

ye−y
2/2σdy + µ

∫ ∞
−∞

f(x)dx

by symmetry, the first integral is 0,

E[X] = µ

∫ ∞
−∞

f(x)dx = µ

Expectation of a gamma random variable X with parameters α, λ

(Proof omitted)

E[X] = α/λ

2.4.3 Expectation of a Function of a Random Variable

If X is a discrete random variable with pmf p(x), then for any real-valued function g,

E[g(X)] =
∑

x:p(x)>0

g(x)p(x)

Proof in the discrete case:
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Let Y = g(X) and let g be invertible. Then P{Y = y} = P{X = g−1(y)} = p(g−1(y)). Letting x = g−1(y),

E[Y ] =
∑

y:P{Y=y}>0

yP{Y = y} =
∑

x:p(x)>0

g(x)p(x)

If X is a continuous random variable with pdf f(x), then for any real-valued function g,

E[g(X)] =

∫ ∞
−∞

g(x)f(x)dx

Proof in the continuous case:

Assume g is an invertible, monotonically increasing function, and let Y = g(X). Then the cdf of g(X) is

FY (y) = P{Y < y} = P{X < g−1(y)} = F (g−1(y))

The pdf of g(X) is

fY (y) = F ′Y (y) = [F ′(g−1(y))][(g−1)′(y)] =
f(g−1(y))

g′(g−1(y))
=
f(x)

g′(x)

E[Y ] =

∫ ∞
−∞

yfY (y)dy =

∫ ∞
−∞

g(x)
f(x)

g′(x)
g′(x)dx =

∫ ∞
−∞

g(x)f(x)dx

through the change of variable g−1(y) = x

If a and b are constants, then

E[aX + b] = aE[X] + b

Proof in the discrete case:

E[aX + b] =
∑

x:p(x)>0

(ax+ b)p(x)

= a
∑

x:p(x)>0

xp(x) + b
∑

x:p(x)>0

p(x)

= aE[X] + b

Proof in the continuous case:

E[aX + b] =

∫ ∞
−∞

(ax+ b)f(x)dx

= a

∫ ∞
−∞

xf(x)dx+ b

∫ ∞
−∞

f(x)dx

= aE[X] + b

E[X] is called expected value, the mean, or the first moment of X.

E[Xn], n ≥ 1 is the nth moment of X;

E[Xn] =

{ ∑
x:p(x)>0 x

np(x), X is discrete∫∞
−∞ xnf(x)dx, X is continuous

(see §2.6)

variance of random variable X:

Var(X) = E[(X − E[X])2]
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Variance of the normal random variable X ∼ N (µ, σ2)

Var(X) = E[(X − E[X])2] = E[(X − µ)2]

=
1

σ
√

2π

∫ ∞
−∞

(x− µ)2e−(x−µ)2/2σ2

dx

substitute y = (x− µ)/σ,

=
σ2

√
2π

∫ ∞
−∞

y2e−y
2/2dy

integrate by parts with u = y, dv = ye−y
2/2dy,

σ2

√
2π

(
−ye−y

2/2
∣∣∞
−∞ +

∫ ∞
−∞

e−y
2/2dy

)
σ2

√
2π

∫ ∞
−∞

e−y
2/2dy

= σ2

Suppose x is continuous with pdf f , and let E[X] = µ, then

Var(X) = E[(X − µ)2]

= E[X2 − 2µX + µ2]

=

∫ ∞
−∞

(x2 − 2µx+ µ2)f(x)dx

=

∫ ∞
−∞

x2f(x)dx− 2µ

∫ ∞
−∞

xf(x)dx+ µ2

∫ ∞
−∞

f(x)dx

= E[X2]− 2µ2 + µ2

= E[X2]− µ2

= E[X2]− (E[X])2

which also works in the discrete case.

2.5 Jointly Distributed Random Variables

2.5.1 Joint Distribution Functions

joint cumulative distribution function (cdf) of X and Y :

F (a, b) = P{X ≤ a, Y ≤ b}

for −∞ < a, b <∞.

Note that the cdf of X is FX(a) = P{X ≤ a} = P{X ≤ a, Y <∞} = F (a,∞) and similarly, FY (b) = P{Y ≤ b} = F (∞, b)

If X and Y are both discrete, the joint probability mass function (pmf) of X and Y is

p(x, y) = P{X = x, Y = y}
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pmf of X:

pX(x) = P{X = x} =
∑

y:p(x,y)>0

p(x, y)

pmf of Y :

pY (y) =
∑

x:p(x,y)>0

p(x, y)

X and Y are jointly continuous if ∃ a nonnegative function f(x, y) defined for all x, y ∈ R s.t. for all sets A and B of real

numbers,

P{X ∈ A, Y ∈ B} =

∫
B

∫
A

f(x, y)dx dy

which is the joint probability density function of X and Y .

finding the pdf of X and Y :

P{X ∈ A} = P{X ∈ A, Y ∈ (−∞,∞)} =

∫ ∞
−∞

∫
A

f(x, y)dx dy =

∫
A

fX(x)dx

where

fX(x) =

∫ ∞
−∞

f(x, y)dy

similarly,

fY (y) =

∫ ∞
∞

f(x, y)dx

Relating the cdf with the pdf:

F (a, b) = P{X ≤ a, Y ≤ b} =

∫ a

−∞

∫ b

−∞
f(x, y)dy dx

d2

da db
F (a, b) = f(a, b)

If X and Y are random variables, and g is a function of 2 variables, then

E[g(X,Y )] =
∑
y

∑
x

g(x, y)p(x, y)

or

E[g(X,Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)f(x, y)dx dy

Example:

E[X + Y ] =

∫ ∞
−∞

∫ ∞
−∞

(x+ y)f(x, y)dx dy

=

∫ ∞
−∞

∫ ∞
−∞

xf(x, y)dx dy +

∫ ∞
−∞

∫ ∞
−∞

yf(x, y)dx dy

= E[X] + E[Y ]

Generalized:

E

[∑
i

aiXi

]
=
∑
i

aiE[Xi]

for random variables Xi and constants ai
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Verifying the expectation of a binomial random variable X with parameters n and p:

X =

n∑
i=1

Xi

where

Xi =

{
1, ith trial is a success

0, ith trial is a failure

E[X] =

n∑
i=1

E[Xi] =

n∑
i=1

p = np

see book for interesting hat example and coupon example

2.5.2 Independent Random Variables

Random variables X and Y are independent if for all a, b,

P{X ≤ a, Y ≤ b} = P{X ≤ a}P{Y ≤ b}

By this definition, if X and Y are independent, the following are true:

• For all a, b, the events Ea = {X ≤ a} and Fb = {Y ≤ b} are independent

• For all a, b, F (a, b) = FX(a)FY (b)

• For discrete X and Y , p(x, y) = pX(x)pY (y)

• For continuous X and Y , f(x, y) = fX(x)fY (y)

Proof that (p(x, y) = pX(x)pY (y))⇒ (X and Y are independent):

P{X ≤ a, Y ≤ b} =
∑
y≤b

∑
x≤a

p(x, y)

=
∑
y≤b

∑
x≤a

pX(x)pY (y)

=
∑
y≤b

pY (y)
∑
x≤a

pX(x)

= P{Y ≤ b}P{X ≤ a}

Similar in the continuous case: ∫∫
f(x)g(y)dx dy =

(∫
f(x)dx

)(∫
g(y)dy

)
If X and Y are independent, then for any functions h and g,

E[g(X)h(Y )] = E[g(X)]E[h(Y )]

Proof in the continuous case, assuming X and Y are jointly continuous:

E[g(X)h(Y )] =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)f(x, y)dx dy
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=

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y)fX(x)fY (y)dx dy

=

∫ ∞
−∞

h(y)fY (y)dy

∫ ∞
−∞

g(x)fX(x)dx

= E[h(Y )]E[g(X)]

2.5.3 Covariance and Variance of Sums of Random Variables

covariance of random variables X and Y :

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

= E[XY − Y E[X]−XE[Y ] + E[X]E[Y ]]

= E[XY ]− E[Y ]E[X]− E[X]E[Y ] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ]

If X and Y are independent, then Cov(X,Y ) = 0

Consider the case where X and Y are indicator variables for whether or not A and B occur:

X =

{
1, A occurs

0, otherwise
Y =

{
1, B occurs

0, otherwise

Then

Cov(X,Y ) = E[XY ]− E[X]E[Y ] = P{X = 1, Y = 1} − P{X = 1}P{Y = 1}

Cov(X,Y ) > 0⇔ P{X = 1, Y = 1} > P{X = 1}P{Y = 1}

⇔ P{X = 1, Y = 1}
P{X = 1}

> P{Y = 1}

⇔ P{Y = 1|X = 1} > P{Y = 1}

which shows that Cov(X,Y ) is positive if the outcome X = 1 makes it more likely that Y = 1 (as well as the reverse).

Positive covariance indicates the Y increases with X while negative covariance indicates Y decreases as X increases.

See excellent example on page 51

Properties of Covariance

1. Cov(X,X) = Var(X)

2. Cov(X,Y ) = Cov(Y,X)

3. Cov(cX, Y ) = c Cov(X,Y )

4. Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z)
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Proof of (4):

Cov(X,Y + Z) = E[X(Y + Z)]− E[X]E[Y + Z]

E[XY ]− E[X]E[Y ] + E[XZ]− E[X]E[Z]

= Cov(X,Y ) + Cov(X,Z)

(4) generalizes to

Cov

 n∑
i=1

Xi,

m∑
j=1

Yj

 =

n∑
i=1

m∑
j=1

Cov(Xi, Yj)

Useful way to express variance of sum of random variables:

Var

(
n∑
i=1

Xi

)
= Cov

 n∑
i=1

Xi

n∑
j=1

Xj


=

n∑
i=1

n∑
j=1

Cov(Xi, Xj)

=

n∑
i=1

Cov(Xi, Xi) +

n∑
i=1

∑
j 6=i

Cov(Xi, Xj)

=

n∑
i=1

Var(Xi) + 2

n∑
i=1

∑
j<i

Cov(Xi, Xj)

In the case that Xi are independent random variables for i = 1, . . . , n,

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi)

If X1, . . . , Xn are independent and identically distributed (i.i.d.), then the sample mean is

X =

n∑
i=1

Xi/n

Suppose X1, . . . , Xn are i.i.d. with E[Xi] = µ and Var(Xi) = σ2, then

• E[X] = µ because

E[X] =
1

n

m∑
i=1

E[Xi] = µ

• Var(X) = σ2/n because

Var(X) =

(
1

n

)2

= Var

(
n∑
i=1

Xi

)
=

(
1

n

)2 n∑
i=1

Var(Xi) =
σ2

n

• Cov(X,Xi −X) = 0, i = 1, . . . , n because

Cov(X,Xi −X) = Cov(X,Xi)− Cov(X,X)

=
1

n
Cov

Xi +
∑
j 6=i

Xj , Xi

−Var(X)
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=
1

n
Cov(Xi, Xi) +

1

n
Cov

∑
j 6=i

Xj , Xi

− σ2

n

σ2

n
+ 0− σ2

n
= 0

due to the fact that Xi and
∑
j 6=iXj are independent and have covariance 0.

Variance of a binomial random variable X with parameters n and p:

X =

n∑
i=1

Xi

where

Xi =

{
1, ith trial is a success

0, ith trial is a failure

Var(X) =

n∑
i=1

Var(Xi)

Var(Xi) = E[X2
i ]− (E[Xi])

2 = E[Xi]− (E[Xi])
2 = p− p2

because X2
i = Xi (because 12 = 1 and 02 = 0). Thus,

Var(X) = np(1− p)

Sampling from a finite population: the hypergeometric

population of N individuals, Np in favor, N−Np opposed, p is unknown; how to estimate p by randomly choosing

and determining the positions of n members of the population

let

Xi =

{
1, if the ith person chosen is in favor

0, otherwise

The usual estimator of p is
∑n
i=1Xi/n

E

[
n∑
i=1

Xi

n

]
=

1

n
E

[
n∑
i=1

Xi

]
=

n∑
i=1

E[Xi] = np

because E[Xi] = Np/N = p for all i.

Var

(
n∑
i=1

Xi

n

)
=

1

n2
Var

(
n∑
i=1

Xi

)

=
1

n2

 n∑
i=1

Var(Xi) + 2
∑
i<j

∑
Cov(Xi, Xj)


Note that Var(Xi) = p(1− p) because Xi is Bernoulli

Because i 6= j,

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] = P{Xi = 1, Xj = 1} − p2

15



= P{Xi = 1}P{Xj = 1|Xi = 1} − p2

=
Np

N

Np− 1

N − 1
− p2

So,

Var

(
n∑
i=1

Xi

n

)
=

1

n2
Var

(
n∑
i=1

Xi

)

=
1

n2

 n∑
i=1

Var(Xi) + 2
∑
i<j

∑
Cov(Xi, Xj)


=

1

n2

(
np(1− p) + 2

(
n

2

)(
Np

N

Np− 1

N − 1
− p2

))
=

1

n2

(
np(1− p) + n(n− 1)

(
p(p− 1)

N − 1

))
=
p(1− p)

n
− (n− 1)p(1− p)

n(N − 1)

Variance of the estimator increases as N increases; as N → ∞, variance approaches p(1 − p)/n. Makes sense

because for N large, each Xi will be approx. independent, so
∑n
i=1Xi will be approx. binomial distribution with

parameters n and p.

Think of
∑n
i=1Xi as the number of white balls obtained when n balls are randomly selected from a population

consisting of Np white and N −Np black balls; this random variable is hypergeometric and has pmf

P

{
n∑
i=1

Xi = k

}
=

(
Np
k

)(
N−Np
n−k

)(
N
n

)
Let X and Y be continuous and independent, and let pdf of X and Y be f and g respectively; let FX+Y (a) be the cdf of

X + Y . Then

FX+Y (a) = P{X + Y ≤ a}

=

∫∫
x+y≤a

f(x)g(y)dx dy

=

∫ ∞
−∞

∫ a−y

−∞
f(x)g(y)dx dy

=

∫ ∞
−∞

(∫ a−y

−∞
f(x)dx

)
g(y)dy

=

∫ ∞
−∞

FX(a− y)g(y)dy

The cdf FX+Y is the convolution of the distributions FX and FY

To find the pdf of X + Y ,

fX+Y (a) =
d

da

∫ ∞
−∞

FX(a− y)g(y)dy

=

∫ ∞
−∞

d

da
(FX(a− y))g(y)dy

16



=

∫ ∞
−∞

f(a− y)g(y)dy

Sum of two independent random variables X and Y uniformly distributed on (0, 1)

f(a) = g(a) =

{
1, 0 < a < 1

0, otherwise

since P{X ≤ a} =
∫ a
−∞ f(x)dx =

∫ a
0
dx = a

Then

fX+Y (a) =

∫ 1

0

f(a− y)dy

since g(y) = 0 for other values of y.

Case 1: 0 ≤ a ≤ 1

fX+Y (a) =

∫ a

0

dy = a

because for y > a, f(a− y) = 0

Case 2: 1 < a < 2

fX+Y (a) =

∫ 1

a−1

dy = 2− a

because f(a− y) = 1 only for y s.t. a− 1 < y < 1

fX+Y (a) =


a, 0 ≤ a ≤ 1

2− a, 1 < a < 2

0, otherwise

Sum of independent Poisson random variables X and Y with means λ1 and λ2

P{X + Y = n} =

n∑
k=0

P{X = k, Y = n− k}

=

n∑
k=0

P{X = k}P{Y = n− k}

=

n∑
k=0

e−λ1
λk1
k!
e−λ2

λn−k2

(n− k)!

= e−(λ1+λ2)
n∑
k=0

λk1λ
n−k
2

k!(n− k)!

=
e−(λ1+λ2)

n!

n∑
k=0

n!

k!(n− k)!
λk1λ

n−k
2

=
e−(λ1+λ2)

n!
(λ1 + λ2)n

X1 +X2 follows a Poisson distribution with mean λ1 + λ2
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n random variables X1, X2, . . . , Xn are independent if, for all values a1, a2, . . . , an,

P{X1 ≤ a1, . . . , Xn ≤ an} =

n∏
i=1

P{Xi ≤ ai}

see pg. 58 for example on order statistics

2.5.4 Joint Probability Distribution of Functions of Random Variables

X1 and X2 are jointly continuous random variables with joint pdf f(x1, x2)

suppose Y1 = g1(X1, X2) and Y2 = g2(X1, X2) for some functions g1 and g2 satisfying the following conditions:

1. y1 = g1(x1, x2) and y2 = g2(x1, x2) can be uniquely solved for x1 and x2 in terms of y1 and y2 with solutions given by,

say, x1 = h1(y1, y2) and x2 = h2(y1, y2)

2. g1 and g2 have continuous partial derivatives at all points (x1, x2) and are such that

J(x1, x2) =

∣∣∣∣∣ ∂g1
∂x1

∂g1
∂x2

∂g2
∂x1

∂g2
∂x2

∣∣∣∣∣ ≡ ∂g1

∂x1

∂g2

∂x2
− ∂g1

∂x2

∂g2

∂x1
6= 0

at all poitns (x1, x2).

then Y1 and Y2 are jointly continuous by

fY1,Y2(y1, y2) = fX1,X2 |J(x1, x2)|−1

where x1 = h1(y1, y2) and x2 = h2(y1, y2). This comes from differentiating both sides of the following equation w.r.t. y1 and

y2:

P{Y1 ≤ y1, Y2 ≤ y2} =

∫∫
(x1,x2):g1(x1,x2)≤y1;g2(x1,x2)≤y2

fX1,X2
(x1, x2)dx1 dx2

see pg. 61 for generalizing to more variables.

2.6 Moment Generating Functions

(see §2.4.3) moment generating function φ(t) of random variable X is defined for all values t by

φ(t) = E[etX ] =

{ ∑
x e

txp(x), X is discrete∫∞
−∞ etxf(x)dx, X is continuous

all the moments of X can be obtained by successively differentiating φ(t).

φ′(t) =
d

dt
E[etX ] = E

[
d

dt
(etX)

]
= E[XetX ]

so φ′(0) = E[X]

in general, the nth derivative of φ(t) evaluated at t = 0 equals E[Xn] for n ≥ 1

Example: Binomial Distribution with n and p
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φ(t) = E[etX ] =

n∑
k=0

etk
(
n

k

)
pk(1− p)n−k =

n∑
k=0

(
n

k

)
(pet)k(1− p)n−k = (pet + 1− p)n

Hence,

E[X] = φ′(0) =
[
n(pet + 1− p)n−1pet

]
t=0

= np

E[X2] = φ′′(0) = n(n− 1)p2 + np

Var(X) = E[X2]− (E[X])2 = n(n− 1)p2 + np− n2p2 = np(1− p)

Example: Poisson Distribution with mean λ

φ(t) = E[etX ] =

∞∑
n=0

etne−λλn

n!
= e−λ

∞∑
n=0

(λet)n

n!
= e−λeλe

t

= eλ(et−1)

E[X] = φ′(0) = λ

E[X2] = φ′′(0) = λ2 + λ

Var(X) = E[X2]− (E[X])2 = λ

See book for more examples as well as a table of moment generating functions.

If X and Y are independent,

φX+Y (t) = E[et(X+Y )] = E[etXetY ] = E[etX ]E[etY ] = φX(t)φY (t)

There is a one-to-one correspondence between the moment generating function and the distribution function of a random

variable.

See book for Poisson paradigm, Laplace transform, multivariate normal distribution

2.6.1 Joint Distribution of Sample Mean and Sample Variance from a Normal Population

X1, . . . , Xn i.i.d. random variables, each mean µ and variance σ2. Sample variance:

S2 =

n∑
i=1

(Xi −X)2

n− 1

where X = 1
n

∑n
i=1Xi

Note that
n∑
i=1

(Xi −X)2 =

n∑
i=1

(Xi − µ+ µ−X)2

=

(
n∑
i=1

(Xi − µ)2

)
+ n(µ−X)2 + 2(µ−X)

n∑
i=1

(Xi − µ)

=

(
n∑
i=1

(Xi − µ)2

)
+ n(µ−X)2 + 2(µ−X)(nX − nµ)
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=

(
n∑
i=1

(Xi − µ)2

)
+ n(µ−X)2 − 2n(µ−X)2

=

(
n∑
i=1

(Xi − µ)2

)
− n(µ−X)2

So,

E[(n− 1)S2] =

n∑
i=1

E[(Xi − µ)2]− nE[(X − µ)2]

= nσ2 − nVar(X)

= nσ2 − n(σ2/n)

= (n− 1)σ2

So E[S2] = σ2

If Z1, . . . , Zn are independent standard normal random variables, then
∑n
i=1 Z

2
i is a chi-squared random variable with n

degrees of freedom

see book for more details

2.7 The Distribution of the Number of Events that Occur

2.8 Limit Theorems

Markov’s Inequality: If X is a random variable that takes only nonnegative values, then for any a > 0,

P{X ≥ a} ≤ E[X]

a

Proof for the case that X is continuous with density f :

E[X] =

∫ ∞
0

xf(x)dx ≥
∫ ∞
a

xf(x)dx ≥
∫ ∞
a

af(x)dx = aP{X ≥ a}

Chebyshev’s Inequality: If X is a random variable with mean µ and variance σ2, then for any k > 0,

P{|X − µ| ≥ k} ≤ σ2

k2

Proof:

(X − µ)2 is a nonnegative random variable, apply Markov’s inequality with a = k2:

P{(X − µ)2 ≥ k2} ≤ E[(X − µ)2]

k2

Because (X − µ)2 ≥ k2 ⇔ |X − µ| ≥ k, then

P{|X − µ| ≥ k} ≤ E[(X − µ)2]

k2
=
σ2

k2
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These inequalities allow us to derive bounds on probabilities when only the mean, or both the mean and the variance, of the

probability distribution are known.

Strong Law of Large Numbers

Let X1, X2, . . . be a sequence of independent random variables having a common distribution, let E[Xi] = µ.

Then, with probability 1,
X1 +X2 + · · ·+Xn

n
→ µ as n→∞

Central Limit Theorem

Let X1, X2, . . . be a sequence of i.i.d. random variables, each with mean µ and variance σ2. Then the distribution

of X1+X2+···+Xn−nµ
σ
√
n

tends to the standard normal as n→∞:

P
{
X1 +X2 + · · ·+Xn − nµ

σ
√
n

≤ a
}
→ 1√

2π

∫ a

−∞
e−x

2/2dx

This holds for all any distribution of the Xis.

see text for proof of CLT

2.9 Stochastic Processes

A stochastic process {X(t), t ∈ T} is a collection of random variables X(t) for each t ∈ T . Refer to X(t) as the state of the

process at time t, and T as the index set of the process. The process is discrete-time if T is countable, and continuous-time if

T is an interval of the real line. The state space of a stochastic process is the set of all possible values that X(t) can assume.

2.10 Extra stuff

In a sequence of independent success-failure trials (success with probability p), the number of successes that appear before

the rth failure follows the negative binomial distribution.

X ∼ NB(r, p)

P{X = k} =

(
k + r − 1

k

)
(1− p)rpk

E[X] =
pr

1− p

Var(X) =
pr

(1− p)2

Continued from §2.2.4:

If N is a binomial random variable with parameters n large and p small,

P{N = i} ≈ e−λλ
i

i!

with E[N ] = np = λ.

From §2.4.1,
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E[N ] =

∞∑
i=0

iP{N = i} =

∞∑
i=1

ie−λ
λi

i!
= λ

∞∑
j=0

e−λ
λj

j!
= λ = np

Let Nt be the number of arrivals in the interval [0, t]. Let

P{Nt = k} = e−λt
(λt)k

k!

for k ≥ 0, so that E[Nt] = λt is directly related with time.

Assume the arrivals are evenly spaced in the time interval.

Let Tk be the time of the kth arrival.

For some fixed time t, the probability that the first arrival comes after t is equal to the probability that there

are no arrivals in the time interval [0, t]:

P{T1 > t} = P{Nt = 0} = e−λt

(because k = 0).

FT1
(t) = P{T1 ≤ t} = 1− P{T1 > t} = 1− e−λt

for t ≥ 0

fT1
(t) =

d

dt
FT1

(t) =
d

dt
(1− e−λt) = λe−λt

T1 is an exponential random variable.

For some fixed k (let t be variable), examine the time of the kth arrival, Tk:

FTk = P{Tk ≤ t} = P{Nt ≥ k} = 1− P{Nt ≤ (k − 1)} = 1−
k−1∑
j=0

P{Nt = j} = 1−
k−1∑
j=0

e−λt
(λt)j

j!

fTk = −
k−1∑
j=0

[
d

dt

(
e−λt

(λt)j

j!

)]
= −

k−1∑
j=0

[
e−λt

(
λjtj−1

(j − 1)!
− λj+1tj

j!

)]
= −e−λt

(
0− λktk−1

(k − 1)!

)
=
λe−λt(λt)k−1

(k − 1)!

because of telescoping. (Be careful with the case j = 0; it is not notated well above.)

E[Tk] =

∫ ∞
0

P{Tk > t}dt =

∫ ∞
0

P{Nt ≤ k}dt

=

∫ ∞
0

 k∑
j=0

e−λt
(λt)j

j!

 dt =

k∑
j=0

∫ ∞
0

e−λt
(λt)j

j!
dt =

k∑
j=0

1

λ

∫ ∞
0

λe−λt(λt)j

j!
dt =

k∑
j=0

1

λ
=
k

λ

(Notice the gamma distribution.)

E[T 2
k ] =

∫ ∞
0

t2
λe−λt(λt)k−1

(k − 1)!
dt =

(k + 1)k

λ2

∫ ∞
0

λe−λt(λt)k+1

(k + 1)!
dt =

(k + 1)k

λ2

∫ ∞
0

P{Tk = k + 1}dt =
(k + 1)k

λ2

Var[Tk] =
(k + 1)k

λ2
− k2

λ
=

k

λ2

Theorem: The interval lengths T1, T2 − T1, T3 − T2, . . . are i.i.d exponential variables with parameter λ.
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E[Tk] = E[T1 + (T2 − T1) + (T3 − T2) + . . . (Tk − Tk−1)] =
k

λ

Var[Tk] = Var[T1 + (T2 − T1) + (T3 − T2) + . . . (Tk − Tk−1)] =
k

λ2

Gamma density function with shape index k and scale parameter λ:

λe−λt(λt)k−1

(k − 1)!

Gamma density function with shape index α and scale parameter λ:

λe−λt(λt)α−1

Γ(α)

where Γ(α) is what makes it a pdf, and

Γ(α) ≡
∫ ∞

0

λe−λt(λt)α−1dt =

∫ ∞
0

e−xxα−1dx

where x = λt (so, dx = λdt).

Properties of Γ:

• Γ(1) = 1

• Γ(α) = (α− 1)Γ(α− 1)

• Γ(k) = (k − 1)! if k is an integer

• Γ
(

1
2

)
=
√
π

Consider X ∼ gamma(α, 1). Since
∫∞

0
e−xxα−1

Γ(α) dx = 1, then

Γ(α) =

∫ ∞
0

e−xxα−1dx

= [−e−xxα−1]∞0 −
∫ ∞

0

−e−x(α− 1)xα−2dx

= 0 + (α− 1)Γ(α− 1)

Γ(α) = (α− 1)Γ(α− 1)

Since Γ(1) = 1, Γ(α) = (α− 1)! if α ∈ N

Consider Y = X2 where X ∼ N (0, 1)

P{Y ≤ t} = P{X2 ≤ t} = P{−
√
t ≤ X ≤

√
t} =

∫ √t
−
√
t

e−x
2/2

√
2π

dx = 2

∫ √t
0

e−x
2/2

√
2π

dx

find pdf:

d

dt
P{Y ≤ t} =

d

dt

(
2

∫ √t
0

e−x
2/2

√
2π

dx

)
= 2

(
e−t

2/2

√
2π

)(
1

2
t−1/2

)
=
e−t/2t−1/2

√
2π

=
1
2e
−t/2( 1

2 t)
−1/2

√
π

Y ∼ gamma
(

1
2 ,

1
2

)
Γ
(

1
2

)
=
√
π

If X1, . . . , Xn each ∼ N (0, 1), then
(∑n

i=1X
2
i

)
∼ gamma

(
n
2 ,

1
2

)
, which is the chi-square distribution.
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Alternative way to compute expected value of a nonnegative random variable, X ≥ 0:

E[X] =

∫ ∞
0

(f(x)x)dx =

∫ ∞
0

f(x)

(∫ x

0

dy

)
dx =

∫ ∞
0

∫ x

0

f(x) dy dx =

∫ ∞
0

∫ ∞
y

f(x) dx dy

=

∫ ∞
0

P{X > y}dy =

∫ ∞
0

(1− F (y))dy

Beta distribution

U follows the beta distribution with shape pair (α, β) if

P{U ∈ du} =
Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−1

for α > 0, β > 0 and u ∈ [0, 1].

3 Conditional Probability and Conditional Expectation

3.1 Introduction

3.2 The Discrete Case

if P(F ) > 0,

P(E|F ) ≡ P(E ∩ F )

P(F )

pmf of X given that Y = y, for all y s.t. P{Y = y} > 0:

pX|Y (x|y) = P{X = x|Y = y} =
P{X = x, Y = y}

P{Y = y}
=
p(x, y)

pY (y)

cdf of X given that Y = y, for all y s.t. P{Y = y} > 0:

FX|Y (x|y) = P{X ≤ x|Y = y} =
∑
a≤x

pX|Y (a|y)

conditional expectation of X given that Y = y:

E[X|Y = y] =
∑
x

xP{X = x|Y = y} =
∑
x

pX|Y (x|y)

Note: properties of expectations still hold, for example:

E

[
n∑
i=1

Xi|Y = y

]
=

n∑
i=1

E[Xi|Y = y]

if X is independent of Y , then pX|Y (x|y) = P{X = x|Y = y} = P{X = x}

Example If X1 and X2 are independent binomial with (n1, p) and (n2, p), let q = 1− p, then
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P{X1 = k|X1 +X2 = m} =
P{X1 = k,X2 = m− k}

P{X1 +X2 = m}
=

(
n1

k

)
pkqn1−k

(
n2

m−k
)
pm−kqn2−m+k(

n1+n2

m

)
pmqn1+n2−m

=

(
n1

k

)(
n2

m−k
)(

n1+n2

m

)
where we use the fact that X1 +X2 ∼ Binomial(n1 + n2, p)

This is the hypergeometric distribution (see §2.5.3), the distribution of the number of blue balls that are

chosen when a sample of m balls is randomly chosen from n1 blue and n2 red balls.

see p 100 for example on Poisson

3.3 The Continuous Case

If X and Y have joint pdf f(x, y), then cdf of X given that Y = y is defined for all y s.t. fY (y) > 0 by

fX|Y (x|y) =
f(x, y)

fY (y)

To motivate this definition, notice that

fX|Y (x|y)dx =
f(x, y)dx dy

fY (y)dy
≈ P{x ≤ X ≤ x+ dx, y ≤ Y ≤ y + dy}

P{y ≤ Y ≤ y + dy}
= P{x ≤ X ≤ x+ dx|y ≤ Y ≤ y + dy}

conditional expectation of X given that Y = y, is defined for all y s.t. fY (y) > 0, by

E[X|Y = y] =

∫ ∞
−∞

xfX|Y (x|y)dx

see book for examples

3.4 Computing Expectations by Conditioning

Let E[X|Y ] be a function of the random variable Y : when Y = y, then E[X|Y ] = E[X|Y = y]. E[X|Y ] itself is random

variable.

For all random variables X and Y ,

E[X] = E[E[X|Y ]]

If Y is discrete,

E[X] =
∑
y

E[X|Y = y]P{Y = y}

and if Y is continuous with pdf fY (y), then

E[X] =

∫ ∞
−∞

E[X|Y = y]fY (y)dy

Proof in the discrete case:

∑
y

E[X|Y = y]P{Y = y} =
∑
y

∑
x

xP{X = x|Y = y}P{Y = y}

=
∑
y

∑
x

xP{X = x, Y = y} =
∑
x

x
∑
y

P{X = x, Y = y} =
∑
x

xP{X = x} = E[X]
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Example Expectation of the sum of a random number of random variables

N denotes number of accidents per week, Xi denotes the number of injuries in the ith accident. Let E[N ] = 4

and E[Xi] = 2 for all i ∈ {1, . . . , N}. What is the expected number of injuries?

E

[
N∑
i=1

Xi

]
= E

[
E

[
N∑
i=1

Xi|N

]]
But

E

[
N∑
i=1

Xi|N = n

]
= E

[
n∑
i=1

Xi|N = n

]
= E

[
n∑
i=1

Xi

]
= nE[X]

which uses the independence of Xi and N . Note that above, E[X] = E[Xi] for all i ∈ {1, . . . , N} Thus,

E

[
N∑
i=1

Xi

]
= E[NE[X]] = E[N ]E[X]

compound random variable
∑N
i=1Xi, the sum of a random number N of i.i.d. random variables that are also

independent of N .

Example Mean of a geometric distribution Trial has probability p of success. N represents number of trials before first

success. Let Y be an indicator random variable that equals 1 if the first trial is a success, and 0 otherwise.

E[N ] = pE[N |Y = 1] + (1− p)E[N |Y = 0]

= p+ (1− p)(1 + E[N ]) = 1/p

see p 111-4 for excellent examples

Example Quicksort

Let Mn denote the expected number of comparisons needed by quick sort to sort a set of n distinct values.

Condition on the rank of the initial value selected:

Mn =

n∑
j=1

E[number of comparisons|value selected is the jth smallest]
1

n

If the initial value selected is the jth smallest, two sets of size j − 1 and n− j, and you need n− 1 comparisons

with the initial value.

Mn =

n∑
j=1

(n− 1 +Mj−1 +Mn−j)
1

n
= n− 1 +

2

n

n−1∑
k=1

Mk

where k = j − 1 and we note that M0 = 0 Then,

nMn = n(n− 1) + 2

n−1∑
k=1

Mk

Replace n by n+ 1

(n+ 1)Mn+1 = (n+ 1)n+ 2

n∑
k=1

Mk

Subtract the two equations

(n+ 1)Mn+1 − nMn = 2n+ 2Mn
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(n+ 1)Mn+1 = (n+ 2)Mn + 2n

Iterate:
Mn+1

n+ 2
=

2n

(n+ 1)(n+ 2)
+

Mn

n+ 1

Mn+1

n+ 2
=

2n

(n+ 1)(n+ 2)
+

2(n− 1)

n(n+ 1)
+
Mn−1

n

= · · ·

= 2

n−1∑
k=0

n− k
(n+ 1− k)(n+ 2− k)

since M1 = 0

Mn+1 = 2(n+ 2)

n−1∑
k=0

n− k
(n+ 1− k)(n+ 2− k)

= 2(n+ 2)

n∑
i=1

i

(i+ 1)(i+ 2)

for n ≥ 1, and we let i = n− k.

Mn+1 = 2(n+ 2)

[
n∑
i=1

2

i+ 2
−

n∑
i=1

1

i+ 1

]
approximate for large n:

∼ 2(n+ 2)

[∫ n+2

3

2

x
dx−

∫ n+1

2

1

x
dx

]
= 2(n+ 2)[2 log(n+ 2)− log(n+ 1) + log 2− 2 log 3]

= 2(n+ 2)

[
log(n+ 2) + log

n+ 2

n+ 1
+ log 2− 2 log 3

]
∼ 2(n+ 2) log(n+ 2)

3.4.1 Computing Variances by Conditioning

Example Variance of geometric random variable

Independent trails with success p. Let N be the trial number of the first success. Let Y = 1 if first trial is success,

Y = 0 otherwise.

Find E[N2]:

E[N2] = E[E[N2|Y ]]

E[N2|Y = 1] = 1

E[N2|Y = 0] = E[(1 +N)2]

E[N2] = p+ E[(1 +N)2](1− p) = 1 + (1− p)E[2N +N2]

Since we showed that E[N ] = 1/p earlier, then

E[N2] = 1 +
2(1− p)

p
+ (1− p)E[N2]

E[N2] =
2− p
p2

Thus,

Var(N) = E[N2]− (E[N ])2 =
2− p
p2
−
(

1

p

)2

=
1− p
p2
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By the definition of variance,

Var(X|Y = y) = E
[
(X − E[X|Y = y])2|Y = y

]
= E[X2|Y = y] + E[−2XE[X|Y = y]|Y = y] + E[(E[X|Y = y])2|Y = y]

= E[X2|Y = y]− 2E[XE[X|Y = y]|Y = y] + (E[X|Y = y])2

= E[X2|Y = y]− 2(E[X|Y = y])2 + (E[X|Y = y])2

= E[X2|Y = y]− (E[X|Y = y])2

If we let Var(X|Y ) be a function of Y that takes the value Var(X|Y = y) when Y = y, then we have this:

Proposition The Conditional Variance Formula

Var(X) = E[Var(X|Y )] + Var(E[X|Y ])

Proof

E[Var(X|Y )] = E[E[X2|Y ]− (E[X|Y ])2] = E[E[X2|Y ]]− E[(E[X|Y ])2] = E[X2]− E[(E[X|Y ])2]

and

Var(E[X|Y ]) = E[(E[X|Y )2]− (E[E[X|Y ]])2 = E[(E[X|Y ])2]− (E[X])2

so,

E[Var(X|Y )] + Var(E[X|Y ]) = E[X2]− (E[X])2

Example Variance of a compound random variable

Let X1, . . . be i.i.d. random variables with distribution F having mean µ and variance σ2, and let them be

independent of the nonnegative integer valued random variable N . S =
∑N
i=1Xi is a compound random variable.

Var(S|N = n) = Var

(
N∑
i=1

Xi|N = n

)
= Var

(
n∑
i=1

Xi|N = n

)
= Var

(
n∑
i=1

Xi

)
= nσ2

(By the same reasoning, E[S|N = n] = nµ) So,

Var(S|N) = Nσ2

and

E[S|N ] = Nµ

and the conditional variance formula gives

Var(S) = E[Nσ2] + Var(Nµ) = σ2E[N ] + µ2Var(N)

In the case that N is Poisson, then S is a compound Poisson random variable. Since the variance of a Poisson

is equal to its mean, if N is Poisson with E[N ] = λ,

Var(S) = λσ2 + λµ2 = λE[X2]

where X has distribution F .

See p 120 for another example
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3.5 Computing Probabilities by Conditioning

If we have X be an indicator random variable that takes value 1 if E occurs and 0 otherwise, then

E[X] = P(E)

E[X|Y = y] = P(E|Y = y)

So if Y is discrete,

P(E) = E[X] =
∑
y

E[X|Y = y]P (Y = y) =
∑
y

P(E|Y = y)P(Y = y)

and if Y is continuous,

P(E) = E[X] =

∫ ∞
−∞

E[X|Y = y]P(Y = y)dy =

∫ ∞
−∞

P(E|Y = y)fY (y)dy

from §3.3

Example Suppose X and Y are independent with pdfs fX and fY . Compute P{X < Y }.

P{X < Y } =

∫ ∞
−∞

P{X < Y |Y = y}fY (y)dy

=

∫ ∞
−∞

P{X > y|Y = y}fY (y)dy

=

∫ ∞
−∞

P{X < y}fY (y)dy

=

∫ ∞
−∞

FX(y)fY (y)dy

=

∫ ∞
−∞

(∫ y

−∞
fX(x)dx

)
fY (y)dy

Example Distribution of the sum of independent Bernoulli random variables

Let X1, . . . Xn be independent Bernoulli random variables with Xi having parameter pi. Specifically, P{Xi =

1} = pi and P{Xi = 0} = qi = 1− pi.

Let

Pk(j) = P{X1 + · · ·+Xk = j}

and note that

Pk(k) =

k∏
i=1

pi

and

Pk(0) =

k∏
i=1

qi

For 0 < j < k, condition on Xk:

Pk(j) = P{X1 + · · ·+Xk = j|Xk = 1}pk + P{X1 + · · ·+Xk = j|Xk = 0}qk

= P{X1 + · · ·+Xk−1 = j − 1|Xk = 1}pk + P{X1 + · · ·+Xk−1 = j|Xk = 0}qk
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= P{X1 + · · ·+Xk−1 = j − 1}pk + P{X1 + · · ·+Xk−1 = j}qk

= pkPk−1(j − 1) + qkPk−1(j)

Start with P1(1) = p1 and P1(0) = q1.

See p 126 for example on best prize problem

See p 130 for example on ballot problem

3.6 Some applications

3.7 An Identity for Compound Random Variables

3.8 Extra stuff

Example

Let X be an exponential random variable with parameter λ.

E[X|X > t] =

∫ ∞
0

P{X > x|X > t}dx

Remember that for an exponential random variable,

P{X > t+ u|X > t} =

{ P{X>t+u}
P{X>t} = e−λu, u ≥ 0

P{X>t}
P{X>t} = 1, u < 0

From the identity E[X] =
∫∞

0
P{X > x}dx for nonnegative random variable X, we have

E[X|X > t] =

∫ ∞
0

P{X > x|X > t}dx =

∫ t

0

dx+

∫ ∞
t

e−λ(x−t)dx = t+
1

λ

Example

Let X1, X2, . . . be i.i.d random variables with E[Xi] = µ and Var(Xi) = σ2, ∀i.

Let N be a random variable, independent of the Xi, with E[N ] = a and Var(N) = b2.

Let random variable S =
∑N

1 Xi for N ≥ 1, and S = 0 for N = 0.

Compute expected value:

E[S] =

∞∑
n=0

E[S|N = n]P{N = n}

=

∞∑
n=0

E[X1 + · · ·+Xn]P{N = n}

=

∞∑
n=0

nµP{N = n} = µE[N ] = aµ

Compute variance:
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E[S2] =

∞∑
n=0

E[S2|N = n]P{N = n}

=

∞∑
n=0

E[(X1 + · · ·+Xn)2]P{N = n}

=

∞∑
n=0

[
V ar(X1 + · · ·+Xn) + (E[X1 + · · ·+Xn])2

]
P{N = n}

=

∞∑
n=0

(nσ2 + n2µ2)P{N = n}

= σ2E[N ] + µ2E[N2]

= σ2E[N ] + µ2(V ar(N) + (E[N ])2)

= aσ2 + µ2(b2 + a2)

V ar(S) = E[S2]− (E[S])2 = aσ2 + b2µ2

Interesting instance where successes and failures are independent

N trials with success probability p, N ∼ Poisson(a)

L = number of successes

M = number of failures

Let Xi be the number of successes at ith trial; i.e. P{Xi = 1} = p, P{Xi = 0} = 1− p = q

L =
∑N
i=1Xi

P{L = i,M = j} = P{L = i,M = j,N = i+ j}

= P{L = i,M = j|N = i+ j}P{N = i+ j}

=

((
i+ j

i

)
pi(1− p)j

)(
e−a

ai+j

(i+ j)!

)
=
e−a(ap)i(aq)j

i!j!

=
e−ap(ap)i

i!

e−aq(aq)j

j!

because p+ q = 1. Notice that this equals P{L = i}P{M = j} where L ∼ Poisson(ap) and M ∼ Poisson(a(1− p))
are independent.

Example
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If the sun rose for n consecutive days, what is the probability that it will rise tomorrow, if we know that its rising

or not is a Bernoulli random variable?

Sn: number of successes in first n trials

X ∼ U(0, 1): probability of success in one trial

P{X ∈ dp} = dp, p ∈ [0, 1]

P{Sn = k|X = p} =
(
n
k

)
pk(1− p)n−k

P{Sn+1 = n+ 1|Sn = n} =
P{Sn+1 = n+ 1}

P{Sn = n}
=

∫ 1

0
pn+1dp∫ 1

0
pndp

=
n+ 1

n+ 2
≈ 1

for n large.

What is P{X ∈ dp|Sn = k}?

P{X ∈ dp|Sn = k} =
P{X ∈ dp}P{Sn = k|X = p}

P{Sn = k}
=

pk(1− p)n−k∫ 1

0
uk(1− u)n−kdu

dp = pk(1− p)n−k k!(n− k)!

(n+ 1)!

Where the denominator is similar to beta distribution:

∫ 1

0

uk(1− u)n−kdu

=
Γ(k + 1)Γ(n− k + 1)

Γ(n+ 2)

∫ 1

0

Γ(n+ 2)

Γ(k + 1)Γ(n− k + 1)
uk(1− u)n−kdu

=
Γ(k + 1)Γ(n− k + 1)

Γ(n+ 2)

=
k!(n− k)!

(n+ 1)!

Theorem

Let X be a random variable and φ be a positive bounded deterministic function.

(X has pdf f(x)) ⇔ (E[φ(X)] =
∫
x
φ(x)f(x)dx)

General strategy for finding pdfs for functions of random variables

E[φ(f(X))] =

∫ b

a

φ(f(x))P{X ∈ dx} = · · · =
∫ d

c

φ(y)g(y)dy

Then g(y)dy = P{f(X) ∈ dy}

Example

Suppose X ∼ expon(λ)

What is the pdf for λX?

E[λX] = λE[X] = 1

Var(λX) = λ2Var(X) = 1
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Let φ be an arbitrary positive, bounded, deterministic function.

Letting y = λx,

E[φ(λX)] =

∫ ∞
0

φ(λX)λe−λxdx

=

∫ ∞
0

φ(y)e−ydy

= E[φ(Y )]

So pdf of Y is e−y.

Conclusion: (X ∼ expon(λ))⇔ (λX ∼ expon(1))

Example

Let X ∼ gamma(α, λ) with shape parameter α and scale parameter λ.

Let Y = λX

Let φ be an arbitrary positive, bounded, deterministic function.

E[φ(Y )] = E[φ(λX)] =

∫ ∞
0

φ(λX)f(x)dx

=

∫ ∞
0

φ(y)
λe−yyα−1

Γ(α)

1

λ
dy

So Y = λX ∼ gamma(α, 1)

Conclusion (concept of scale): (X ∼ gamma(α, λ))⇔ (λX ∼ gamma(α, 1))

Example: Convolution

(Also see §2.5)

Let X and Y be independent, with pdfs f and g

What is pdf of Z = X + Y ?

Let φ be an arbitrary positive bounded function.

Let φ̂(X,Y ) = φ(X + Y )

E[φ(Z)] = E[φ(X + Y )] = E[φ̂(X,Y )]

=

∫ ∞
−∞

∫ ∞
−∞

φ̂(x, y)P{X ∈ dx, Y ∈ dy}

=

∫ ∞
−∞

∫ ∞
−∞

φ(x+ y)f(x)g(y)dydx

=

∫ ∞
−∞

∫ ∞
−∞

φ(z)f(x)g(z − x)dzdx

=

∫ ∞
−∞

φ(z)

(∫ ∞
−∞

f(x)g(z − x)dx

)
dz
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=

∫ ∞
−∞

φ(z)h(z)dz

We call h(z) =
∫∞
−∞ f(z)g(z − x)dz the convolution of f and g, written f ∗ g.

Example

Let X ∼ gamma(α, λ)

Let Y ∼ gamma(β, λ)

Let X and Y be independent

Show that Z = X + Y and U = X
X+Y are independent.

Suffices to show that this is true for λ = 1; we can scale to any other value for λ.

Let φ be an arbitrary, positive, bounded function in two variables, and let φ̂(x, y) = φ( x
x+y , x+ y).

(Goal: try to get
∫∫

φ(u, z)h(u, z)dudz)

Letting y = z − x, and x = zu,

E[φ(U,Z)] = E[φ̂(X,Y )] =

∫ ∞
0

∫ ∞
0

φ̂(x, y)f(x)g(y)dydx

=

∫ ∞
0

∫ ∞
0

e−xxα−1

Γ(α)

e−yyβ−1

Γ(β)
φ

(
x

x+ y
, x+ y

)
dydx

=

∫ ∞
0

∫ ∞
x

e−xxα−1

Γ(α)

e−(z−x)(z − x)β−1

Γ(β)
φ
(x
z
, z
)
dzdx

=

∫ ∞
0

∫ z

0

e−xxα−1

Γ(α)

e−(z−x)(z − x)β−1

Γ(β)
φ
(x
z
, z
)
dxdz

=

∫ ∞
0

∫ 1

0

e−z(zu)α−1(z(1− u))β−1

Γ(α)Γ(β)
φ(u, z)(z du)dz

=

∫ ∞
0

∫ 1

0

(
e−zzα+β−1

Γ(α+ β)

)(
Γ(α+ β)

uα−1(1− u)β−1

Γ(α)Γ(β)

)
φ(u, z)dudz

Z ∼ gamma(α+ β, λ) and U ∼ Beta(α, β) are independent.

E[X + Y ] = α+β
λ

How to compute E
[

X
X+Y

]
?

Method 1:∫ 1

0

u
Γ(α+ β)

Γ(α)Γ(β)
uα−1(1− u)β−1du =

Γ(α+ β)

Γ(α+ β + 1)

Γ(α+ 1)

Γ(α)

∫ 1

0

Γ(α+ β + 1)

Γ(α+ 1)Γ(β)
uα(1− u)β−1du =

α

α+ β

Method 2:

We know that X + Y and X
X+Y are independent.

E
[

X

X + Y

]
E[X + Y ] = E

[
X

X + Y
(X + Y )

]
E
[

X

X + Y

]
=

E[X]

E[X + Y ]
=

α/λ

(α+ β)/λ
=

α

α+ β

34



Special case: α = β = 1
2

X
X+Y ∼ Beta

(
1
2 ,

1
2

)
Because Γ( 1

2 ) =
√
π

pdf:
Γ(1)

Γ( 1
2 )Γ( 1

2 )
u−

1
2 (1− u)−

1
2

=
1

π
√
u(1− u)

cdf (let u = sin2 x):

P
{

X

X + Y
≤ t
}

=

∫ t

0

1

π
√
u(1− u)

du

=

∫ arcsin
√
t

0

1

π sinx cosx
(2 sinx cosxdx)

=
2

π
arcsin

√
t

This is the arcsine distribution, which is a special case of the beta distribution (beta
(

1
2 ,

1
2

)
)

4 Markov Chains

4.1 Introduction

Let {Xn}n∈{0,1,2,...} be a stochastic process with state space D, which can be finite or countable, and transition matrix

P = [pij ] = [P{Xn+1 = j|Xn = i}]

for i, j ∈ D.

X is a Markov chain if

P{Xn+1 = j|X0, . . . , Xn} = P{Xn+1 = j|Xn}

X is time-homogeneous if P{Xn+1 = j|Xn = i} is free of n.

We will suppose that D is discrete (countable number of states).

The n-step transition probabilities

p
(n)
ij = P{Xm+n = j|Xm = i}

are the i, j entries of the matrix Pn (see next section).

Note that ∑
j∈D

P{Xn+1 = j|Xn = i} = 1

(sum of rows in matrix is 1)
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4.2 Chapman-Kolmogorov Equations

Let us denote Pi{F} = P{F |X0 = i} and Ei[F ] = E[F |X0 = i] for any event F .

Ex. Pb{X1 = c,X2 = a,X3 = b} = pbcpcapab (step through each Xi).

Pi{X2 = k} =
∑
j∈D

Pi{X1 = j,X2 = k} =
∑
j∈D

pijpjk = p
(2)
ik

which is the i, k entry of P 2. Reasoning: we know X0 = i and X2 = k; we add up the probabilities of all possible values of

X1, which turns out to be the matrix product of the ith row and kth column of P , which is the i, k entry of P 2, which equals

[p
(2)
ij ].

In general,

Pi{Xm+n = k} =
∑
j∈D

Pi{Xn = j,Xm+2n = k} =
∑
j

p
(m)
ij p

(n)
jk = p

(m+n)
ik

which is the i, k entry of Pm+n. This is a Chapman-Kolmogorov equation.

4.3 Classification of States; Recurrency and Transiency

Definition There is a path from i to j if p
(n)
ij > 0 for some n ≥ 0. We notate this i j.

If i j and j  i, then they are in the same class. Note that this is an equivalence relation, so it partitions D into classes.

A Markov chain with only one class is said to be irreducible.

Let N(j) be the number of visits to state j over all time n = {0, 1, 2, . . .}.

Definition We say j is recurrent if P{N(j) = +∞} = 1 (that if the particle is at state j, it will eventually come back to

state j). Otherwise, j is transient. Note that recurrency of state j also implies that the particle will be in state j infinitely

many times, and that transiency of state j implies that it will visit state j only finitely many times.

Ross’s definition: For any state i, let fi denote the probability that, starting in state i, the process will ever reenter state i.

If fi = 1, we say i is recurrent; if fi < 1, we say i is transient.

Theorem If i is recurrent and i j, then j is recurrent and j  i.

Define “success at trial m” to mean j is visited at least once between trials m − 1 and m where a trial is the

mth time the particle is in state i. The probability of such a success is strictly positive because i j (Murphy’s

law?). By the Strong Markov Property, test trials are independent Bernoulli trials. There are infinitely many

trials because i is recurrent. Then the total number of successes is also infinite with probability 1. Since the

number of visits to j is at least as large as the number of successes (can have multiple visits to j per success),

then P{N(j) = ∞} = 1. Further, if i  j, then j  i since i is recurrent (you reach state j from state i, but

must eventually get back to i). Or in other words, ∃n : Pj{Xn = i} > 0.

Corollary If i j and j  i (i.e., i and j are in the same class) and i is transient, then j is transient.

Proof: Let i be transient and let i and j be in the same class. For sake of contradiction, let j be recurrent. There

is a path from j to i, so by the theorem, i is recurrent, which is a contradiction.

Note that the condition for the corollary is stronger than for the theorem.
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Theorem If D is finite and X is irreducible, then by the previous theorem, all states are recurrent. Having all states be

transient is impossible, since each state will only be visited a finite amount of times, which would result in a time in which

the particle is in no state, which is a contradiction.

However, if D is infinite, it is possible that all states are transient. Since there are an infinite number of states, each state

can still be visited a finite number of times (transiency), and time can still continue on infinitely. See example below:

Example

Consider D = {0} ∪ N and

P =



1− p p 0 0 0 · · ·
1− p 0 p 0 0 · · ·

0 1− p 0 p 0 · · ·
0 0 1− p 0 p · · ·
...

...
...

. . .
. . .

. . .


Then

• p > 1
2 ⇒ all states are transient

• p < 1
2 ⇒ all states are recurrent (because state 0 is recurrent)

• p = q ⇒ all states are recurrent (proof omitted)

Theorem More generally, if X is irreducible, either all states are recurrent or all states are transient. Thus, recurrency and

transiency are class properties.

4.4 Stationary Distribution; Limiting Probabilities

Definition A state i is said to have period d if p
(n)
ii = 0 if n is not divisible by d, and d is the largest integer with this

property. Or in other words, the period of a state i can be expressed as

di = GCF{n ≥ 0 : p
(n)
ii > 0}

Periodicity is a class property, or more specifically, states in the same class have the same period.

Let π be a row vector whose entries are

πi = P{X0 = i}

Thus π is the distribution of X0.

Then

P{Xn = j} =
∑
i∈D

P{X0 = i}P{Xn = j|X0 = i} =
∑
i∈D

πip
(n)
ij

which is the jth entry in the row vector πPn.

Suppose π = πP . This implies π = πP = πP 2 = · · · so π = πPn ∀n. Then

P{Xn = j} =
∑
i∈D

πip
(n)
ij = πj

Such a π is called a stationary distribution for the process X = {Xn}n∈{0,1,...}. A stationary distribution exists if there

is at least one recurrent state. Consequently, if a state space is finite, a stationary distribution exists because at least one

state must be recurrent.
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If D is recurrent and irreducible (for finite D, irreducibility suffices), then there is a unique π such that π = πP and∑
j∈D πi = 1. This is because the solution space of π = πP has dimension 1, that is, if π satisfies the equation, then so

does cπ, for any constant c. However, for π to represent a distribution, the sum of its entries must be 1, so normalizing any

solution to π = πP will give you the unique row vector.

Theorem Suppose that D is recurrent and irreducible and that all states are aperiodic (for finite D, irreducibility and

aperiodicity suffice). Then

πj = lim
n→∞

Pi{Xn = j} = lim
n→∞

p
(n)
ij

exists for each j, the limit does not depend on the initial state i, and the row vector π of probabilities πj is the unique

stationary distribution. Note that each row of lim
n→∞

Pn is π.

Note: by definition, the limiting probability Pi{Xn = j} of a transient state j is 0. If a Markov chain has transient states,

remove all rows and columns of the transition matrix that correspond to transient states, and find the stationary distribution

of the smaller matrix that results (that is, just consider the recurrent states).

4.5 Rewards

Given f : D → R, we represent f as a column vector with entries f(i) for each state i. Pnf is a column vector, and let

Pnf(i) be the ith entry of Pnf . We can think of f(j) as the reward for being in state j. Then the reward at time n is f(Xn).

Ei[f(Xn)] =
∑
j∈D

f(j)Pi{Xn = j}

=
∑
j∈D

f(j)p
(n)
ij

= Pnf(i) ith entry of Pnf, a column vector

Suppose reward is f(Xn) at time n, and discount factor is αn for α < 1. This gives smaller rewards for larger n.

Total discounted reward is
∑∞
n=0 α

nf(Xn)

Ei

[ ∞∑
n=0

αnf(Xn)

]
=

∞∑
n=0

αnEi[f(Xn)]

=

∞∑
n=0

αnPnf(i)

Lettting g(i) = Ei [
∑∞
n=0 α

nf(Xn)] and g being a column vector with entries g(i),

g = f + αPf + α2P 2f + · · ·

= f + αPg

Then the problem is a system of equations: g(a)

g(b)

g(c)

 =

 f(a)

f(b)

f(c)

+ α

 paa pab pac

pba pbb pbc

pca pcb pcc


 g(a)

g(b)

g(c)



38



4.6 Time Averages

Fix a state j. Let Nm(j) be the number of visits to state j during [0,m]. This can be interpreted as a reward function

f(x) = 1.

Ei[Nm(j)] =

m∑
n=0

p
(n)
ij

Theorem If X is irreducible recurrent and aperiodic, then lim
n→∞

p
(n)
ij = πj where πj is part of the stationary distribution.

Then from the equation above,

lim
m→∞

1

m
Ei[Nm(j)] = lim

m→∞

1

m

m∑
n=0

p
(n)
ij = lim

m→∞
p

(n)
ij = πj

(See appendix for proof of the middle equality). In other words, the limiting probability πj is also the long-term average of

the expected number of visits to j per unit time.

Theorem Suppose X is irreducible recurrent (but not necessarily aperiodic). Let π be the stationary distribution. Then

with probability one,

lim
m→∞

1

m
Nm(j) = πj

The limiting probability πj is also the long-time average of the random number of visits to j per unit time. This is a basically

a strong law of large numbers.

Proof:

Use strong law of large numbers: if L1, L2, . . . are i.i.d. with mean µ, then with probability one,

lim
n→∞

1

n
(L1 + · · ·+ Ln) = µ

Let Li be the lengths between successive visits to the fixed state j (i.e., Li is the length between the ith and

(i+ 1)st visit to j).

Since the past and future become independent at each time of visit to j, the lengths L0, L1, · · · are independent,

and L1, L2, · · · are i.i.d. and thus have the same mean µ. By the strong law,

lim
n→∞

1

n+ 1
(L0 + L1 + · · ·+ Ln) = µ

with probability one. In other words, the visits to j occur once every µ time units on the average in the long run.

Thus the number of visits to j per unit time is equal to 1
µ in the long run:

lim
m→∞

1

m
Nm(j) =

1

µ

with probability one. To show that 1
µ = pij , take the expectations of both sides and use the result from the

previous theorem.

Corollary

lim
m→∞

1

m

m∑
n=0

f(Xn) =
∑
j∈D

πjf(j) = πf

Proof:
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∑m
n=0 f(Xn) is the reward accumulated until time m if we receive f(j) dollars each time we are in state j, for all

j. So,
m∑
n=0

f(Xn) =
∑
j∈D

Nm(j) f(j).

Applying the earlier theorem, we get the result in the corollary.

The LHS is an average over time, whereas the RHS is an average of f over the state space D. The equality of these two

averages is called the ergodic principle.

4.7 Transitions

Let Nm(i, j) be the number of transitions from i to j during [0,m]. Every time the chain is in state i, there is the probability

pij that the next jump is to state j. At each visit to i, interpret as a Bernoulli trial where “success” means “jumping to state

j.” Then long-run number of successes per trial is

lim
m→∞

Nm(i, j)

Nm(i)
= pij

Theorem With this along with the results from the previous section, we have

lim
m→∞

1

m
Nm(i, j) = lim

m→∞

1

m
Nm(i)pij = πipij

This is useful if we have a reward f(i, j) that depends on both the present and preceding state (jump from i to j).

Cumulative reward during [0,m]:
m∑
n=1

f(Xn−1, Xn) =
∑
i

∑
j

Nm(i, j)f(i, j)

Long-term reward per unit time:

lim
m→∞

1

m

m∑
n=1

f(Xn−1, Xn) =
∑
i

∑
j

πipijf(i, j)

4.8 Rewards up to a random time

Let a particle move from state to state in D according to a Markov chain. It receives a reward of f(j) each time it is in state

j. Each dollar of time n is worth αn dollars today, at time 0. The particle “dies” (stops receiving rewards) as soon as it

enters A, where A is some fixed subset of D. The expected value of the present worth of all rewards we are to receive, given

the initial state is i, is

g(i) = Ei
T−1∑
n=0

αnf(Xn)

where T = TA is the time of the first visit to the set A, i.e.

T = min{n ≥ 0 : Xn ∈ A}

If i ∈ A, then g(i) = 0, otherwise:

Theorem Let A be a subset of D, let B be the complement of A. Suppose B is finite. Then for i ∈ B,

g(i) = f(i) +
∑
j∈B

αpijg(j).
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Proof:

Suppose i ∈ B. Then T ≥ 1 and we receive a reward of f(i) dollars at time 0 and the discounted expected value

of all rewards to be received from time 1 on is equal to g(X1) dollars in time 1 dollars. Since g(j) = 0 for j ∈ A,

the expected value of g(X1) dollars of time 1 is equal to
∑
j∈B αpijg(j) at time 0.

5 The Exponential Distribution and the Poisson Process

5.1 Introduction

5.2 The Exponential Distribution

5.2.1 Definition

pdf: f(x) = λe−λx, x ≥ 0

cdf: F (x) =
∫ x
−∞ f(y)dy = 1− e−λx, x ≥ 0

Using integration by parts, where u = x and dv = λe−λx:

E[X] =
∫∞
−∞ xf(x)dx =

∫∞
0
λxe−λxdx = −xe−λx

∣∣∞
0

+
∫∞

0
e−λxdx = 1

λ

φ(t) = E[etX ] =
∫∞

0
etxλe−λxdx = λ

∫∞
0
e−(λ−t)xdx = λ

λ−t for t < λ

E[X2] = d2

dt2φ(t)
∣∣∣
t=0

= 2λ
(λ−t)3

∣∣∣
t=0

= 2
λ2

Var(X) = 1
λ2

Example Expected discounted return is equal to reward earned up to an exponentially distributed random time (see book)

5.2.2 Properties of Exponential Distribution

Definition A random variable X is memoryless if

P{X > s+ t|X > t} = P{X > s}, (∀s, t ≥ 0)

⇔ P{X > s+ t,X > t} = P{X > s}P{X > t}

Since e−λ(s+t) = e−λse−λt, exponentially distributed random variables are memoryless.

See books for example problems on memorylessness of exponential

Definition: a+ = a if a > 0, and a+ = 0 if a ≤ 0.

Claim: The only right continuous function g that satisfies g(s+ t) = g(s)g(t) is g(x) = e−λx

Proof:

Suppose g(s+ t) = g(s)g(t).

g(2/n) = g(1/n+ 1/n) = (g(1/n))2

Repeating yields g(m/n) = (g(1/n))m

Also, g(1) = g(1/n+ · · ·+ 1/n) = (g(1/n))n
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g(1/n) = (g(1))1/n

g(m/n) = (g(1/n))m = (g(1))m/n

By the right continuity of g, we then have g(x) = (g(1))x

g(1) = (g(1/n))2 ≥ 0

g(x) = e−(− log(g(1)))x

Definition: failure/hazard rate function is r(t) = f(t)
1−F (t)

Suppose lifetime X has survived for t; what is the probability it does not survive for additional time dt?

P{X ∈ (t, t+ dt)|X > t} = P{X∈(t,t+dt),X>t}
P{X>t} = P{X∈(t,t+dt)}

P{X>t} ≈ f(t)dt
1−F (t) = r(t)dt

If X ∼ expon(λ), then r(t) = λe−λt

e−λt
= λ

r(t) uniquely determines distribution F :

r(t) =
d
dtF (t)

1−F (t)

Integrate both sides:

log(1− F (t)) = −
∫ t

0
r(t)dt+ k

1− F (t) = ek exp
{
−
∫ t

0
r(t)dt

}
Setting t = 0 shows that k = 0

F (t) = 1− exp
{
−
∫ t

0
r(t)dt

}
Claim: exponential random variables are the only ones that are memoryless

Proof: We showed above that memoryless is equivalent to having a constant failure rate function, and that exponential

random variables have a constant failure rate function. If a failure rate function is constant, then by the equation above,

1− F (t) = e−ct, which shows that it must be exponential.

See book for example on hyperexponential random variable.

5.2.3 Further Properties of the Exponential Distribution

Sum of i.i.d. exponential random variables is gamma

Let X1, . . . , Xn be i.i.d., Xi ∼ expon(λ),∀i ∈ {1, . . . , n}

Nothing to prove when n = 1.

Assume fX1+···+Xn−1(t) = λe−λt (λt)n−2

(n−2)!

Then

fX1+···+Xn(t) =

∫ ∞
0

fXn(t− s)fX1+···+Xn−1
(s)ds

=

∫ t

0

λe−λ(t−s)λe−λs
(λs)n−2

(n− 2)!
ds

= λe−λt
(λt)n−1

(n− 1)!

Probability that an exponential variable is less than another
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Let X1 ∼ expon(λ1) and X2 ∼ expon(λ2)

P{X1 < X2} =

∫ ∞
0

P{X1 < X2|X1 = x}λ1e
−λ1xdx

=

∫ ∞
0

P{x < X2}λ1e
−λ1xdx

=

∫ ∞
0

e−λ2xλ1e
−λ1xdx

=

∫ ∞
0

λ1e
−(λ1+λ2)xdx

=
λ1

λ1 + λ2

Smallest of independent exponential random variables

Suppose X1, . . . , Xn are indep. exponential random variables, Xi ∼ expon(µi).

P{min(X1, . . . , Xn) > x} = P{X1 > x,X2 > x, . . . ,Xn > x}

=

n∏
i=1

P{Xi > x}

=

n∏
i=1

e−µix

= exp

{
−

(
n∑
i=1

µi

)
x

}

Thus, min(X1, . . . , Xn) ∼ expon (
∑n
i=1 µi)

Example Greedy Algorithm (see book)

5.3 The Poisson Process

5.3.1 Counting Processes

Definition A stochastic process {N(t), t ≥ 0} is a counting process if N(t) represents the total number of events that

occur by time t. Then these must hold:

• N(t) ≥ 0

• N(t) ∈ Z

• (s < t)⇒ (N(s) ≤ N(t))

• For s < t, but N(t)−N(s) is the number of events in (s, t]

Definition A counting process has independent increments if the number of events that occur in disjoint time intervals

are independent.

Definition A counting process has stationary increments if the distribution of the number f events that occur in any

interval of time depends only on the length of the interval.
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5.3.2 Definition of Poisson Process

Definition Counting process {N(t), t ≥ 0} is a Poisson process having rate λ > 0 if

• N(0) = 0

• independent increments

• N(t+ s)−N(s) ∼ Pois(λt) which implies stationary increments and that E[N(t)] = λt

Definition The function f is said to be o(h) if limh→0
f(h)
h = 0

Definition Counting process {N(t), t ≥ 0} is a Poisson process with rate λ > 0 if

• N(0) = 0

• stationary and independent increments

• P{N(h) = 1} = λh+ o(h)

• P{N(h) ≥ 2} = o(h)

Theorem The two definitions of Poisson process are equivalent.

Proof in book

5.3.3 Interarrival and Waiting Time Distributions

Let T1 be the time of the first event. Let Tn be the time between the (n − 1)st and the nth event for n > 1. We call {Tn}
the sequence of interarrival times

P{T1 > t} = P{N(t) = 0} = e−λt so T1 ∼ expon(λ)

P{T2 > t} = E[P{T2 > t|T1}] = E[P{0 events in (s, s+ t]|T1}] = E[P{0 events in (s, s+ t]}] = e−λt

T2 ∼ expon(λ), and T2 is indep. of T1

Proposition: Tn ∼ expon(λ),∀n ∈ N

We call Sn =
∑n
i=1 Ti the waiting time until the nth event. By this proposition, and the result from §5.2.3 and §2.2,

Sn ∼ gamma(n, λ), that is

fSn(t) = λe−λt
(λt)n−1

(n− 1)!

Alternate method:

N(t) ≥ n⇔ Sn ≤ t

FSn(t) = P{Sn ≤ t} = P{N(t) > n} =

∞∑
j=n

e−λt
(λt)j

j!
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differentiate:

fSn(t) = −
∞∑
j=n

λe−λt
(λt)j

j!
+

∞∑
j=n

λe−λt
(λt)j−1

(j − 1)!

= λe−λt
(λt)n−1

(n− 1)!
+

∞∑
j=n+1

λe−λt
(λt)j−1

(j − 1)!
−
∞∑
j=n

λe−λt
(λt)j

j!

= λe−λt
(λt)n−1

(n− 1)!

5.3.4 Further Properties of Poisson Processes

Suppose each event in Poisson process {N(t), t ≥ 0} with rate λ is classified as either type I (with probability p) or type

II (with probability 1 − p). Let N1(t) and N2(t) denote the number of type I and type II events occurring in [0, t]. Then

N(t) = N1(t) +N2(t).

Proposition {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent Poisson processes having respective rates λp and λ(1 − p).
Proof:

Verify that {N1(t), t ≥ 0} satisfies the [second] definition of Poisson process:

• N1(0) = 0 follows from N(0) = 0

• stationarity and independence of increments is inherited because the number of type I events in an interval

can be obtained by conditioning on the number of events in that interval, and the distribution of the number

of events in that interval depends only on the length of the interval and is independent of what has occurred

in any nonoverlapping interval

•

P{N1(h) = 1} = P{N1(h) = 1|N(h) = 1}P{N(h) = 1}+ P{N1(h) = 1|N(h) ≥ 2}P{N(h) ≥ 2}

= p(λh+ o(h)) + o(h)

= λph+ o(h)

• P{N1(h) ≥ 2} ≤ P{N(h) ≥ 2} = o(h)

So, {N1(t), t ≥ 0} is a Poisson process with rate λp. Similarly, {N2(t), t ≥ 0} is a Poisson process with rate

λ(1− p)

See §3.8 (or example 3.23 in the book) for why they are independent.

See book for excellent examples
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5.3.5 Conditional Distribution of the Arrival Times

Suppose N(t) = 1. What is T1?

P{T1 < s|N(t) = 1} =
P{T1 < s,N(t) = 1}

P{N(t) = 1}

=
P{N(s) = 1}P{N(t)−N(s) = 0}

P{N(t) = 1}

=
λse−λse−λ(t−s)

λte−λt

=
s

t

So T1 ∼ U(0, t)

see book for order statistics

Theorem (Dart Theorem) Given N(t) = n, the n arrival times S1, . . . Sn have the same distribution as the order statistics

corresponding to n independent random variables uniformly distributed on the interval (0, t). Phrased differently, this theorem

states that under the condition that N(t) = n, the times S1, . . . , Sn at which events occur, considered as unordered random

variables, are distributed independently and uniformly in the interval (0, t).

Proposition If Ni(t), i ∈ {1, . . . , k} represents the number of type i events occurring by time t, then Ni(t), i ∈ {1, . . . , k}
are independent Poisson random variables having means E[Ni(t)] = λ

∫ t
0
Pi(s)ds where Pi(t) is hte probability that an event

occurring t time y will be classified as type i, independently of anything that previously occurred.

5.3.6 Estimating Software Reliability

m is the number of bugs in a package

Bug i will cause errors to occur in accordance with a Poisson process having unknown rate λi, i ∈ {1, . . . ,m}.

Then, number of errors due to bug i that occurs in any s units of operating time is ∼ Pois(λis)

The Poisson processes caused by bugs i for i ∈ {1, . . . ,m} are independent

Let program run, then after time t, remove all bugs that caused an error by time t. Then the only bugs that remain are

those whose errors all occur after t.

What is error rate of the revised package?

Let φi(t) =

{
1, bug i has not caused an error by t

0, otherwise

The error rate of the revised package is Λ(t) =
∑
i λiφi(t) (add up all the rates of Poisson processes associated with bugs

that haven’t been caught yet)

E[Λ(t)] =
∑
i λiE[φi(t)] =

∑
I λie

−λit

Each discovered bug is responsible for certain number of errors. Denote by Mj(t) the number of bugs that caused exactly

j errors by time t. (So, M1(t) is the number of bugs that caused exactly one error, M2(t) the number of bugs that caused

exactly two errors, etc.) Then
∑
j jMj(t) is the total number of errors found before time t.

Let Ii(t) =

{
1, bug i causes exactly 1 error by time t

0, otherwise

Then M1(t) =
∑
i Ii(t)
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E[M1(t)] =
∑
i E[Ii(t)] =

∑
i λite

−λit

So, then we have E
[
Λ(t)− M1(t)

t

]
= 0

Var(Λ(t)) =
∑
i

λ2
iVar(φi(t)) =

∑
i

λ2
i e
−λit(1− e−λit)

Var(M1(t)) =
∑
i

Var(Ii(t)) =
∑
i

λite
−λit(1− λite−λit)

Cov(Λ(t),M1(t)) = Cov

∑
i

λiφi(t),
∑
j

Ij(t)


=
∑
i

∑
j

Cov(λiφi(t), Ij(t))

=
∑
i

λiCov(φi(t), Ii(t))

= −
∑
i

λie
−λitλite

−λit

Where the last two equalities follow because (i 6= j) ⇒ (φi(t) and Ij(t) are independent).

Then

Var

(
Λ(t)− M1(t)

t

)
= E

[(
Λ(t)− M1(t)

t

)2
]

=
∑
i

λ2
i e
−λit +

1

t

∑
i

λie
−λit =

E[M1(t) + 2M2(t)]

t2

where we use E[M2(t)] = 1
2

∑
i(λ− it)2e−λit

5.4 Generalizations of the Poisson Process

5.4.1 Nonhomogeneous Poisson Process

5.4.2 Compound Poisson Process

Definition A stochastic process {X(t), t ≥ 0} is said to be a compound Poisson process if it can be represented as

X(t) =

N(t)∑
i=1

Yi, t ≥ 0

where {N(t)} is a Poisson process, and {Yi, i ≥ 1} is a family of i.i.d. random variables, independent of {N(t)}.

5.4.3 Conditional or Mixed Poisson Processes

Definition Let {N(t)} be a counting process whose probabilities are defined as follows: there is a poisitive random variable

L such that, conditional on L = λ, the counting prcess is a Poisson process with rate λ. This counting process is called a

conditional or mixed Poisson process. Such a process has staionary increments, but generally does not have independent

increments.
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5.5 Extra stuff

Stronger version of memorylessness

We showed earlier that if X ∼ expon(λ), then

P{X > t+ s|X > t} = P{X > s}

We want to show that for nonnegative random variables Y and Z, independent of each other and of X,

P{X > Y + Z|X > Y } = P{X > Z}

P{X > Y + Z|X > Y } =

∫ ∞
0

∫ ∞
0

P{X > Y + Z|X > Y, Y = y, Z + z}P{Y ∈ dy}P{Z ∈ dz}

=

∫ ∞
0

∫ ∞
0

P{X > y + z|X > y}P{Y ∈ dy}P{Z ∈ dz}

=

∫ ∞
0

∫ ∞
0

P{X > z}P{Y ∈ dy}P{Z ∈ dz}

= P{X > Z}

Alternate way to view random (geometric) sum of i.i.d. exponential random variables

Let Xi ∼ expon(ν), ∀i ∈ {1, 2, . . .}

Let P{K = n} = (1− p)n−1p

Let S =
∑K
j=1Xj

instead of conditioning on K, think of the Xi as the inter arrival times in Poisson process with rate ν, where each

arrival is either a success with probability p or a failure with probability 1− p.

Then S is the arrival time of the first success. S ∼ expon(pν)

Superposition of two Poisson processes

Let L be a Poisson process with rate λ

Let M be a Poisson process with rate µ, independent of L

Then superposition process N (defined as Nt = Lt +Mt) is Poisson process with rate λ+ µ

P{a given arrival in the superposition process is from L} = λ
λ+µ

P{a given arrival in the superposition process is from M} = µ
λ+µ

Alternate way to compute P{X < Y } when X ∼ expon(λ) and Y ∼ expon(µ)

Think of X as the time of the first arrival in a Poisson process with rate λ.

Think of Y as the time of the first arrival in a Poisson process with rate µ.

P{X < Y } = P{first arrival in superposition process is from the first process} = λ
λ+µ
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Decomposition of two Poisson processes

Each arrival in Poisson process N with rate λ has probability pk of being “type” k, with
∑n
k=1 pk = 1.

We can decompose into independent Poisson processes of only arrivals of type k, call it N (k) with rate pkλ.

Non-stationary Poisson processes

is a counting process with independent increments, but not stationary increments

λt is the rate per unit time at t

P{NA = k} = e−µ(A) (µ(A))k

k!

where µ(A) =
∫
A
λudu

Intuition: plot λt over t, then for an infinitesimally small time interval, the function is approximately constant,

and the mean of the Poisson distribution of arrivals in this interval is the area under the curve.

6 Continuous-Time Markov Chains

6.1 Introduction

Poisson process (where N(t) is the state of the process) is a continuous -time Markov chain with states {0, 1, 2, . . .} that

always proceeds from state n to n+ 1 where n ≥ 0.

A process is a pure birth process if the state of the system is always increased by one in any transition.

A process is a birth and death model if the state of the system is n+ 1 or n− 1 after a transition from state n.

6.2 Continuous-Time Markov Chains

Definition A continuous-time stochastic process {X(t), t ≥ 0} whose state space is {0, 1, 2, . . .} is a continuous-time

Markov Chain if for all s, t ≥ 0¡ and nonnegative integers i, j, x(u), 0 ≤ u < s,

P{X(t+ s) = j|X(s) = i,X(u) = x(u), 0 ≤ u < s} = P{X(t+ s) = j|X(s) = i}

or in other words, it has the Markovian property that the conditional distribution of the future X(t + s) given the present

X(s) and the past X(u), 0 ≤ u < s depends only on the present and is independent of the past.

If in addition,

P{X(t+ s) = j|X(s) = i}

is independent of s, then the continuous-time Markov chain is said to have stationary or homogeneous transition probabilities.

All Markov chains considered here will be assumed to have stationary transition probabilities.

If we let Ti denote the amount of time that the process stays in state i before making transition into a different state, then

P{Ti > s+ t|Ti > s} = P{Ti > t}

Therefore Ti is memoryless and must be exponentially distributed.
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Definition An alternate way to define a continuous-time Markov chain: a stochastic process that has the properties that as

each time it enters state i, the amount of timeit spendsin the state before transitioning into a different state is exponentially

distributed with mean 1/vi and when the process leaves state i, it enters state j with home probability Pij which satisfies,

for all i, that Pij = 0 and
∑
j Pij = 1.

In other words, a continuous-time Markov chain is a stochastic process that moves from state to state in accordance with a

discrete-time Markov chain, and the amount of time spent in each state before proceeding to the next state is exponentially

distributed. Additionally, the amount of time the process spends in state i and in the next state visited must be independent

(Markov property).

6.3 Birth and Death Processes

6.4 The Transition Probability Function Pij(t)

6.5 Limiting Probabilities

6.6 Time Reversibility

6.7 Uniformization

6.8 Computing the Transition Probabilities

7

8

9 Reliability Theory

9.1 Introduction

Reliability theory: probability that a system will function

9.2 Structure Functions

system of n components, each component is either functioning or failed, indicator variable xi for the ith component:

xi =

{
1, ith component functioning

0, ith component failed

state vector:

x = (x1, . . . , xn)

structure function of the system:

φ(x) =

{
1, system is functioning when state vector is x

0, system failed when state vector is x
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series structure functions iff all components function:

φ(x) = min(x1, . . . , xn) =

n∏
i=1

xi

parallel structure functions iff at least one component is functioning:

φ(x) = max(x1, . . . , xn) = 1−
n∏
i=1

(1− xi)

k-out-of-n structure functions off at least k of the n components are functioning:

φ(x) =

{
1,

∑n
i=1 xi ≥ k

0,
∑n
i=1 xi < k

Ex: four-component structure; 1 and 2 both function, at least one of 3 and 4 function

φ(x) = x1x2max(x3, x4) = x1x2(1− (1− x1)(1− x2))

φ(x) is an increasing function of x; replacing a failed component by a functioning one will never lead to a deterioration of

the system

i.e., xi ≤ yi, ∀i ∈ {1, . . . , n} ⇒ φ(x) ≤ φ(y)

a system is thus monotone

9.2.1 Minimal Path and Minimal Cut Sets

x is a path vector if φ(x) = 1

x is a minimal path vector if φ(y) = 0 for all y < x

note: y < x if yi ≤ xi, ∀i ∈ {1, . . . , n} with yi < xi for some i

If x is a minimal path vector, then A = {i : xi = 1} is a minimal path set; minimal set of components whose functioning

ensures the system’s functioning

In a k-out-of-n system, there are
(
n
k

)
minimal path sets (all sets consisting of exactly k components)

let A1, . . . , As denote minimal path sets. Define αj(x) as the indicator function of the jth minimal path set:

αj(x) =

{
1, all components of Aj are functioning

0, otherwise
=
∏
i∈Aj

xi

A system functions iff all components of at least one minimal path set are functioning:

φ(x) =

{
1, αj(x) = 1 for some j

0, αj(x) = 0 for all j
= maxjαj(x) = maxj

∏
i∈Aj

xi

x is a cut vector if φ(x) = 0

x is a minimal cut vector if phi(y) = 1 for all y > x

If x is a minimal cut vector, then C = {i : xi = 0} is a minimal cut set; a minimal set of components whose failure ensures

the failure of the system
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let C1, . . . , Ck denote minimal cut sets. Define βj(x) as the indicator function of the jth minimal cut set:

β(x) =

{
1, at least one component of Cj is functioning

0, all components in Cj are not functioning
= maxi∈Cjxi

A system fails iff all components of at least one minimal cut set are not functioning:

φ(x) =

k∏
j=1

βj(x) =

k∏
j=1

maxi∈Cjxi

9.3 Reliability of Systems of Independent Components

Xi, the state of the ith component is a random variable such that

P{Xi = 1} = pi = 1− P{Xi = 0}

where pi is the reliability of the ith component.

Note that

φ(X) = Xiφ(1i,X) + (1−Xi)φ(0i,X)

(see below for explanation of notation).

Define the reliability of the system r by

r := P{φ(X) = 1} = E[φ(X)]

where X = (X1, . . . , Xn).

Define reliability function r(P ) = r where P = (p1, . . . , pn)

reliability of a series system:

r(P ) = P{φ(X) = 1} = P{Xi = 1, ∀i =∈ {1, . . . , n}} =

n∏
i=1

pi

reliability of a parallel system:

r(P ) = P{φ(X) = 1} = P{Xi = 1 for some i ∈ {1, . . . , n}} = 1−
n∏
i=1

(1− p1)

reliability of a k-out-of-n system with equal probabilities:

r(p, . . . , p) = P{φ(X) = 1} = P

{
n∑
i=1

Xi ≥ k

}
=

n∑
i=k

(
n

i

)
pi(1− p)n−i

Theorem If r(P ) is the reliability function of a system of independent components, then r(P ) is an increasing function of

P .

Proof:

r(P ) = E[φ(X)] = piE[φ(X)|Xi = 1] + (1− pi)E[φ(X)|Xi = 0]

= piE[φ(1i,X)] + (1− pi)E[φ(0i,X)]
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where (1i,X) = (X1, . . . , Xi−1, 1, Xi+1, . . . , Xn) and (0i,X) = (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn) so,

r(P ) = piE[φ(1i,X)− φ(0i,X)] + E[φ(0i,X)]

but since φ is an increasing function, E[φ(1i,X)− φ(0i,X)] ≥ 0 so r(P ) increases in pi for all i.

Notation: xy denotes inner product; max(x,y) = (max(x1, y1), . . . ,max(xn, yn))

Warning φ(X) is a function of X1, . . . , Xn. To find E[φ(X)], you cannot just replace Xi with pi, because, for example,

p2
1 6= E[X2

1 ] = E[X1] = p1. You can only replace the Xi with pi if it is not being multiplied by itself. See bridge problem in

homework for details.

Suppose a system of n different components is to be built from a stockpile containing exactly 2 of each type of component.

Which is better?

• Build 2 separate systems, then

P{at least one system functions} = 1− P{neither system functions} = 1− ((1− r(P ))(1− r(P ′)))

• Build one system, then

P{φ(X) = 1} = r[1− (1− P )(1− P ′)]

since 1− (1− pi)(1− p′i) is the probability that the ith component functions

Theorem For any reliability function r and vectors P , P ′,

r[1− (1− P )(1− P )] ≥ 1− [1− r(P )][1− r(P ′)]

or equivalently

E[φ(max(X,X′))] ≥ E[max(φ(X), φ(X′))]

Proof:

Let X1, . . . , Xn, X
′
1, . . . , X

′
n be mutually independent 0-1 random variables with

pi = P{Xi = 1}; p′i = P{X ′i = 1}

P{max(Xi, X
′
i) = 1} = 1− (1− pi)(1− p′i)

⇒ r[1− (1− P )(1− P ′)] = E(φ[max(X,X′)])

Because φ is monotonically increasing, φ[max(X,X′)] greater than or equal to both φ(X) and φ(X′), so

φ[max(X,X′)] ≥ max[φ(X), φ(X′)]

So,

r[1− (1− P )(1− P ′)] ≥ E[max[φ(X), φ(X′)]] = P{max[φ(X), φ(X′)] = 1} = 1− [1− r(P )][1− r(P ′)]
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9.4 Bounds on the Reliability Function

9.5 System Life as a Function of Component Lives

For a distribution function G, define G(a) ≡ 1−G(a) as the probability that the random variable is greater than a.

The ith component functions for a random length of time (distribution Fi), then fails.

Let F denote the distribution of system lifetime, then

F (t) = P{system life > t} = P{system is functioning at time t} = r(P1(t), . . . , Pn(t))

where

Pi(t) = P{component i is functioning at t} = P{lifetime of i > t} = F i(t)

So,

F (t) = r(F 1(t), . . . , Fn(t))

system life in a series system: r(P ) =
∏n
i=1 pi, so

F (t) =

n∏
i=1

F i(t)

system life in a parallel system: r(P ) = 1−
∏n
i=1(1− pi), so

F (t) = 1−
n∏
i=1

Fi(t)

failure rate function of G:

λ(t) =
g(t)

G(t)
=

d
dtG(t)

G(t)

where g(t) = d
dtG(t)

in §5.2.2, if G is the distribution of the lifetime of an item, then λ(t) represents the probability intensity that a t-year-old

item will fail

G is an increasing failure rate (IFR) distribution if λ(t) is an increasing function of t

G is an decreasing failure rate (DFR) distribution if λ(t) is an decreasing function of t

A random variable has Weibull distribution if its distribution is, for some λ > 0, α > 0,

G(t) = 1− e−(λt)α

for t ≥ 0. The failure rate function is

λ(t) =
e−(λt)αα(λt)α−1λ

e−(λt)α
= αλ(λt)α−1

Weibull distribution is IFR when α ≥ 1, and DFR when 0 < α ≤ 1; when α = 1, G(t) = 1−e−λt, the exponential distribution

(IFR and DFR).

see book for Gamma distribution

Suppose lifetime distribution of each component in a monotone system is IFR. Does this imply that the system lifetime is

also IFR? Suppose each component has same lifetime distribution G. That is, Fi(t) = G(t), ∀i ∈ {1, . . . , n}. Compute failure

rate function of F .
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If we define r(G(t)) ≡ r(G(t), . . . , G(t)), then

λF (t) =
d
dtF (t)

F (t)
=

d
dt (1− r(G(t)))

r(G(t))
=
r′(G(t))

r(G(t))
G′(t) =

G(t)r′(G(t))

r(G(t))

G′(t)

G(t)
= λG(t)

pr′(p)

r(p)

∣∣∣∣
p=G(t)

Since G(t) is a decreasing function of t, if each component of a coherent system has the same IFR lifetime distribution, then

the distribution of system lifetime will be IFR if pr′(p)/r(p) is a decreasing function of p.

See book for example on IFR k-out-of-n system and a non-IFR parallel system

See p 606 for discussion on mixtures

If a distribution F (t) has density f(t) = F ′(t), then

λ(t) =
f(t)

1− F (t)∫ t

0

λ(s)ds =

∫ t

0

f(s)

1− F (s)
ds = − logF (t)

So,

F (t) = e−Λ(t)

where Λ(t) =
∫ t

0
λ(s)ds the [cumulative] hazard function of distribution F .

A distribution F has an increasing failure rate on the average (IFRA) if

Λ(t)

t
=

∫ t
0
λ(s)ds

t

increases in t for t ≥ 0. The average failure rate up to time t increases as t increases.

F is IFR ⇒ F is IFRA, but not necessarily the converse:

F is IFRA

⇔ Λ(s)/s ≤ Λ(t)/t whenever 0 ≤ s ≤ t

⇔ Λ(αt)
αt ≤

Λ(t)
t for 0 ≤ α ≤ 1, ∀t ≥ 0

⇔ − logF (αt) ≤ −α logF (t)

⇔ logF (αt) ≥ logF
α

(t)

⇔ F (αt) ≥ Fα(t), for 0 ≤ α ≤ 1, ∀t ≥ 0 because log is a monotone function

For a vector P = (p1, . . . , pn), define Pα = (pα1 , . . . , p
α
n)

Proposition Any reliability function r(P ) satisfies

r(Pα) ≥ [r(P )]α

for 0 ≤ α ≤ 1.

Proof

If n = 1, then r(p) ≡ 0 or r(p) ≡ 1 or r(p) ≡ p. In all three cases, the inequality is satisfied.

Assume the proposition holds for n− 1 components. Consider a system of n components with structure function

φ. Condition on whether or not the nth component is functioning:

r(Pα) = pαnr(1n, P
α) + (1− pαn)r(0n, P

α)
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Consider a system of components 1 through n−1 having a structure function φ1(x) = φ(1n,x) (watch subscripts),

so the reliability function is r1(P ) = r(1n, P ), so from the inductive assumption,

r(1n, P
α) ≥ [r(1n, P )]α

Similarly, consider a system of components 1 through n− 1 having a structure function φ0(x) = φ(0n,x), then

r(0n, P
α) ≥ [r(0n, P )]α

So,

r(Pα) ≥ pαn[r(1n, P )]α + (1− pαn)[r(1n, P )]α ≥ [pnr(1n, P ) + (1− pn)r(0n, P )]α = [r(P )]α

(see lemma).

Lemma If 0 ≤ α ≤ 1, 0 ≤ λ ≤ 1, then

h(y) = λαxα + (1− λα)yα − (λx+ (1− λ)y)α ≥ 0

for 0 ≤ y ≤ x.

Theorem For a monotone system of independent components, if each component has an IFRA lifetime distribution, then

the distribution of system lifetime is itself IFRA.

Proof

distribution of system lifetime F is

F (αt) = r(F 1(αt), . . . , Fn(αt))

Since r is monotonic, since each of the component distributions F i is IFRA, then using the fact that F (αt) ≥ Fα(t)

as shown earlier, along with the proposition just proved,

F (αt) ≥ r(Fα1 (t), . . . , F
α

n(t)) ≥ [r(F 1(t), . . . , Fn(t))]α = F
α

(t)

9.6 Expected System Lifetime

P{system life > t} = r(f(t))

where f(t) = (F 1(t), . . . , Fn(t))

See §2.10 for why

E[X] =

∫ ∞
0

P{X > x}dx

Thus,

E[system life] =

∫ ∞
0

r(f(t))dt

Consider a k-out-of-n system of i.i.d. exponential components. If θ is the mean lifetime of each component, then

F i(t) =

∫ t

0

1

θ
e−x/θdx = e−t/θ

Since for a k-out-of-n system,

r(p, p, . . . , p) =

n∑
i=k

(
n

i

)
pi(1− p)n−i
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we have

E[system life] =

∫ ∞
0

n∑
i=k

(
n

i

)
(e−t/θ)i(1− e−t/θ)n−idt

Let y = e−t/θ ⇒ dy = −yθdt, then

E[system life] = θ

n∑
i=k

(
n

i

)∫ 1

0

yi−1(1− y)n−idy

= θ

n∑
i=k

n!

(n− i)!i!
(i− 1)!(n− i)!

n!
= θ

n∑
i=k

1

i

(see lemma below).

Lemma ∫ 1

0

yn(1− y)mdy =
m!n!

(m+ n+ 1)!

Proof

Let C(n,m) =
∫ 1

0
yn(1− y)mdy

Integration by parts:

C(n,m) =
1

n+ 1
yn+1(1− y)m

∣∣∣∣1
y=0

−
∫ 1

0

1

n+ 1
yn+1m(1− y)m−1(−1)dy

=
m

n+ 1

∫ 1

0

yn+1(1− y)m−1dy

C(n,m) =
m

n+ 1
C(n+ 1,m− 1)

Since C(n, 0) = 1
n+1 , use induction to prove the result.

Another approach

Lifetime of a k-out-of-n system can be written as T1 + · · ·+Tn−k+1 where Ti represents time between the (i−1)st

and ith failure. T1 + · · ·+Tn−k+1 represents the time when the (n−k+1)st component fails which is the moment

that the number of functioning components is less than k. When all n components are functioning, the rate at

which failures occur is n/θ; i.e., T1 is exponentially distributed with mean θ/n. Therefore, Ti represents the time

until the next failure when there are n−(i−1) functioning components; Ti is exponentially distributed with mean

θ/(n− i+ 1). So,

E[T1 + · · ·+ Tn−k+1] = θ

[
1

n
+ · · ·+ 1

k

]

9.6.1 An Upper Bound on the Expected Life of a Parallel System

9.7 Systems with Repair

9.8 Extra Stuff

(Covers §9.5)
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Let L represent lifetime. P{L > t} is such that P{L > 0} = 1, and limt→∞ P{L > t} = 0.

We can express it as

P{L > t} = e−H(t)

where the cumulative hazard function H(t) = − logP{L > t} is increasing(?) in t, has H(0) = 0, and

limt→∞H(t) =∞.

Thus, if X ∼ exponential distribution with parameter 1, P{X > u} = e−u, so

P{X > H(t)} = e−H(t) = P{L > t}

Let H(t) =
∫ t

0
h(s)ds and h(t) = d

dtH(t).

Exponential distribution:

P{L > t} = e−λt, t ≥ 0

H(t) = λt, t ≥ 0

h(t) = λ

Interpretation: for a lifetime that follows an exponential distribution, since the hazard function is constant, its

probability of dying at any given moment is independent of how long it has lived so far.

Weibull Distribution:

P{L > t} = e−(λt)α , t ≥ 0

H(t) = (λt)α, t ≥ 0

h(t) = αλ(λt)α−1

Let F (t) = P{L ≤ t} and let f(t) = d
dtF (t) and let F (t) = 1− F (t)

Then

h(t) =
d

dt
(− logP{L > t}) =

− d
dt (P{L > t})
P{L > t}

=
− d
dt (1− F (t))

F (t)
=
f(t)

F (t)

Probability of death based on current condition:

P{L ≤ t+ ∆t|L > t} = 1− P{L > t+ ∆t|L > t}

= 1− P{L > t+ ∆t}
P{L > t}

= 1− exp(−H(t+ ∆t) +H(t))

= 1− exp

(
−
∫ t+∆t

t

h(s)ds

)
≈ 1− exp(−h(t)∆t)

≈ h(t)∆t

for small ∆t (use Taylor series for last step)

lim
u→∞

1

u
{L ≤ t+ u|L > t} = h(t)
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Note: if something has an increasing failure rate (IFR), the hazard function h(t) must be differentiable and ∂
∂tλ(t) > 0 for

all t.

Example: two ways to compute lifetime of parallel structure

Three components in parallel with lifetimes that follow exponential distributions of parameters λ1, λ2, λ3.

P{L ≤ t} = P{L1 ≤ t}P{L2 ≤ t}P{L3 ≤ t} = (1− e−λ1t)(1− e−λ2t)(1− e−λ3t)

E[L] =

∫ ∞
0

P{L > t}dt

= 1−
∫ ∞

0

(1− e−λ1t)(1− e−λ2t)(1− e−λ3t)dt

= 1−
∫ ∞

0

1− e−λ1t − e−λ2t − e−λ3t + e−(λ1+λ2)t + e−(λ1+λ3)t + e−(λ2+λ3)t − e−(λ1+λ2+λ3)tdt

=
1

λ1
+

1

λ2
+

1

λ3
− 1

λ1 + λ2
− 1

λ1 + λ3
− 1

λ2 + λ3
+

1

λ1 + λ2 + λ3

(Use the same trick for expected value)

Suppose all have the same distribution. Then what?

Method 1:

Use the above formula to get 3/λ− 3/(2λ) + 1/(3λ) = 11/(6λ)

Method 2:

Three time intervals:

L1: duration for which 3 components are working; ∼ expon(3λ)

L2: duration for which 2 components are working: ∼ expon(2λ)

L3: duration for which 1 component is working: ∼ expon(λ)

E[L] = E[L1 + L2 + L3] = 1/(3λ) + 1/(2λ) + 1/(λ) = 11/(6λ)

10 Brownian Motion and Stationary Processes

10.1 Gaussian processes

10.1.1 Gaussian Distribution

Definition We write X ∼ Gsn(µ, σ2) if P{X ∈ dx} = 1√
2πσ2

e−(x−µ)2/2σ2

dx

Definition The standard Guassian distribution is Gsn(0, 1), that is, P{X ∈ dx} = 1√
2π
e−x

2/2dx

De Moivre showed that the binomial distribution with n→∞ approximates the Guassian (see de Moivre-Laplace theorem)

Bachelier: Gsn(0, 1
2π ): P{X ∈ dx} = e−πx

2

dx

Moment generating function for X ∼ Gsn(0, 1):
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E[erX ] =

∫ ∞
−∞

erx
e−x

2/2

√
2π

dx

=

∫ ∞
−∞

e−
1
2 (x2−2rx) 1√

2π
dx

=

∫ ∞
−∞

e−
1
2 (x2−2rx+r2)er

2/2 1√
2π
dx

= er
2/2

∫ ∞
−∞

1√
2π
e−(x−r)2/2dx

= er
2/2

Differentiating the moment generating function φ(r) = er
2/2 and setting r = 0 helps us find expected values:[

dn

drn
er

2/2

]
r=0

= E[Xn]

From this we have E[Z2] = 1, E[Z4] = 3, [Z6] = 15, as well as E[Z1] = E[Z3] = E[Z5] = · · · = 0 which can be

seen from the symmetry of the pdf of Z.

E[Zn] =

0 n is odd

n!

2n/2(n2 )!
n is even

Transformation to standard Gaussian:

Let X ∼ Gsn(µ, σ2)

P
{
X − µ
σ

≤ y
}

= P{X ≤ µ+ σy}

P
{
X − µ
σ

≤ y
}

=

∫ µ+σy

−∞

1√
2πσ2

e−(x−µ)2/2σ2

dx

P
{
X − µ
σ

∈ dy
}

=
d

dy

∫ µ+σy

−∞

1√
2πσ2

e−(x−µ)2/2σ2

dx dy

=

(
1√

2πσ2
e((µ+σy)−µ)2/2σ2

)
σ dy

=
e−y

2/2

√
2π

dy

Where we use d
dy (g(h(y))) = g′(h(y))h′(y) with g(z) =

∫ z
0

1√
2πσ2

e−(x−µ)2/2σ2

dx and h(y) = µ+ σy.

So

X ∼ Gsn(µ, σ2)⇔ X = µ+ σZ

where Z ∼ Gsn(0, 1)

The generating function for X is E[erX ] = E[er(µ+σZ)] = erµe(rσ)2/2 = erµ+(r2σ2/2), and since the moment

generating function is determined uniquely, any distribution with the previous generating function must have

distribution Gsn(µ, σ2):

X ∼ Gsn(µ, σ2)⇔ E[erX ] = erµ+(r2σ2/2)
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Linear combinations:

Let X ∼ Gsn(µ, σ2) be independent of Y ∼ Gsn(ν, τ2). Then

αX + βY ∼ Gsn(αµ+ βν, α2σ2 + β2τ2)

This can be shown by using the moment generating function and the independence of X and Y

E[erαX ] = eαµr+(r2α2σ2/2); E[erβY ] = eβνr+(r2β2τ2/2)

E[er(αX+βY )] = E[erαX ] · E[erβY ] = e(αµ+βν)+r2(α2σ2+β2τ2)/2 ⇔ αX + βY ∼ Gsn(αµ+ βν, α2σ2 + β2τ2)

Gaussian-gamma connection:

Z ∼ Gsn(0, 1)⇒ Z2 ∼ gamma

(
1

2
,

1

2

)
Proof:

P{Z2 ≤ t} = P{−
√
t ≤ Z ≤

√
t} =

∫ √t
−
√
t

1√
2π
e−x

2/2dx = 2

∫ √t
0

1√
2π
e−x

2/2dx

d

dt
P{Z2 ≤ t} =

(
1√
2π
e−t/2

)
t−1/2 =

λe−λt(λt)α−1

Γ(α)

where λ = α = 1
2 , which also shows that Γ

(
1
2

)
=
√
π. Also see §2.10.

In §3.8, we showed that if X ∼ gamma(α, λ) and Y ∼ gamma(β, λ) are independent, then X + Y ∼ gamma(α+

β, λ). Then, if Z1, . . . , Zn i.i.d. with distribution Gsn(0, 1), then

Z2
1 + · · ·+ Z2

n ∼ gamma

(
n

2
,

1

2

)
This is the chi-square distribution with n degrees of freedom.

Gaussian and exponentials:

If X and Y are i.i.d. with distribution Gsn(0, 1), then X2 + Y 2 ∼ gamma
(
1, 1

2

)
≡ expon

(
1
2

)
Let X and Y be x- and y-coordinates of a random point in R2; (X,Y ) is the landing point of a dart aimed at the

origin.

Let R =
√
X2 + Y 2 be the distance from the origin

Let A be the angle made by the vector 〈X,Y 〉, measured CCW from positive x-axis.

Then

• R2 ∼ expon
(

1
2

)
• A ∼ U(0, 2π]

• R and A are independent
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This is used in Monte-Carlo studies for generating Gaussian variables: given R2 ∼ expon
(

1
2

)
and A ∼ U(0, 2π],

then R cosA and R sinA are independent Gsn(0, 1) variables.

We can derive the pdf of the arcsine distribution (beta
(

1
2 ,

1
2

)
) with this interpretation. Since X2 and Y 2 have

distribution gamma
(

1
2 ,

1
2

)
, and using the fact that if A ∈ [0, arcsin

√
u] ∪ [π − arcsin

√
u, π] ∪ [π, π + arcsin

√
u] ∪

[2π − arcsin
√
u, 2π), then (sinA)2 ≤ u to find:

P
{

X2

X2 + Y 2
≤ u

}
= P{(sinA)2 ≤ u} = 4

arcsin
√
u

2π
=

2

π
arcsin

√
u

P
{

X2

X2 + Y 2
∈ du

}
=

1

π
√
u(1− u)

Cauchy distribution

If X and Y are independent Gsn(0, 1) variables, the distribution of T = X/Y is called the standard Cauchy

distribution, which has pdf

p(z) =
1

(1 + z2)π

for z ∈ R.

Note that T and 1/T have the same distribution.

1/T = Y/X = tanA where A ∼ U(0, 2π]

One way to derive the standard Cauchy density using this:

E[T ] = E[f(tanA)] =

∫ 2π

0

f(tan a)
1

2π
da

=

∫
(0,π2 )∪( 3π

2 2π)

f(tan a)
1

2π
da+

∫ 3π
2

π
2

f(tan a)
1

2π
da resolve uniqueness of arctan

=

∫ ∞
−∞

f(x)
1

2π

1

1 + x2
dx+

∫ ∞
−∞

f(x)
1

2π

1

1 + x2
dx tan a = x; a = arctanx; da =

1

1 + x2
dx

=

∫ ∞
−∞

f(x)
1

π(1 + x2)
dx

So we get the pdf of the Cauchy distribution

T has no expected value: ∫ 0

−∞
z p(z) dz = −∞∫ ∞

0

z p(z) dz =∞

and the sum of these two integrals is undefined.

Exercise Show that if X,Y are independent Gsn(0, 1) variables,

that X2 + Y 2 ∼ expon
(

1
2

)
and Y/X ∼ Cauchy, and are independent.

Hint: E[f(X2 + Y 2, Y/X)]

Relation to binomial distribution: If Sn ∼ binom(n, p), then

Sn − np√
np(1− p)

∼ Z

as n→∞ and p→ a moderate value.
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10.1.2 Gaussian vectors

Definition A random vector X = (X1, . . . , Xn) ∈ Rn is said to be Gaussian (in Rn) if

α ·X = α1X1 + · · ·+ αnXn

is Gaussian for any vector α = (α1, . . . , αn) ∈ Rn.

Recall that if X1, . . . Xn are independent Gaussian variables, then any linear combination α1X1 + . . .+αnXn is also Gaussian.

This implies that X = (X1, . . . , Xn) is Gaussian. The converse is not necessarily true though.

Theorem A random vector X = (X1, . . . , Xn) is Gaussian if and only if it has the form

Xi = µi +

n∑
j=1

aijZj

∀i ∈ {1, . . . , n} where Z1, . . . , Zn are independent Gsn(0, 1) variables, µ1, . . . , µn ∈ R, and aij ∈ R,∀i, j ∈ {1, . . . , n}.

Example

 X1

X2

X3

 =

 1.2

−0.8

−0.5

+

 0.3 0 0.5

0.8 0.1 2.0

0 −0.8 −6.4


 Z1

Z2

Z3


Each Xi is in the form expressed in the previous theorem. The Xi depend on each other through their dependence

on the Zi.

Note that E[X1] = 1.2 because E[Zi] = 0 for all i. We can see that E[Xi] = µi.

Note that

Cov(X1, X3) = E[(X1 − 1.2)(X3 + 0.5)]

= E[(0.3Z1 + 0.5Z3)(−0.8Z2 − 6.4Z3)]

= E[(0.5)(−6.4)(Z3)2]

because E[ZiZj ] = 0 if i 6= j due to independence.

Let r ∈ Rn.

E[r ·X] = E[r1X1 + · · ·+ rnXn] = r1µ1 + · · · rnµn = r · ~µ

Var(r ·X) = E[(r ·X− r · ~µ)2]

= E[(r1(X1 − µ1) + · · ·+ rn(Xn − µn))2]

=

n∑
i=1

n∑
j=1

rirjE[(Xi − µi)(Xj − µj)]

=

n∑
i=1

n∑
j=1

riσijrj

=

n∑
i=1

n∑
j=1

r · (Σr)

=

n∑
i=1

n∑
j=1

rᵀΣr
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where σij = Cov(Xi, Xj), and Σ = [σij ]1≤i,j≤n is the covariance matrix.

E[er·X] = exp

{
r · ~µ+

1

2
rᵀΣr

}
Theorem If X = (X1, . . . , Xn) is Gaussian, Xi and Xj are independent if and only if Cov(Xi, Xj) = 0. Note that X must

be Gaussian; otherwise, it is possible that Xi and Xj are Gaussian with covariance 0, but still be dependent on each other.

More generally, if X is Gaussian, then X1, . . . Xn are independent if and only if the covariance matrix Σ is diagonal, that is,

σij = 0 for all i 6= j.

10.1.3 Gaussian processes

Definition Let X = {Xt}t≥0 be a stochastic process with state space R (that is, Xt ∈ R). Then X is a Gaussian process

if X = (Xt1 , . . . , Xtn) is Gaussian for all choices of n ≥ 2 and t1, . . . , tn.

If X is a Gaussian process, the distribution of X is specified for all n and t1, . . . , tn once we specify the mean function

m(t) = E[Xt] and the covariance function v(s, t) = Cov(Xs, Xt). m is arbitrary, but v must be symmetric (i.e., v(s, t) =

v(t, s)) and positive-definite (i.e., rᵀΣr > 0, see explanation of Var(r ·X).

10.1.4 Gauss-Markov Chains

Let 0 < r < 1 and c > 0 be fixed. Let Z1, Z2, . . . be i.i.d. Gsn(0, 1), let Y0 ∼ Gsn(a0, b
2
0) be independent of the Zn. Define

process Y = {Yn}n∈{0,1,...} recursively by

Yn+1 = rYn + cZn+1

Or in words, “the current value is equal to a proportion of the previous value plus an additive randomness.”

Note that cZn ∼ Gsn(0, c2).

Yn = rnY0 + crn−1Z1 + crn−2Z2 + · · ·+ crZn−1 + cZn

The vector (Y0, Y1, . . . , Yn) is Gaussian for any n because each Yi is a linear combination of independent Gaussian random

variables. Therefore, Y = {Yn}n∈{0,1,...} is a Gaussian process.

an = E[Yn] = rna0

vn,n = Var(Yn)

= r2nb20 + c2r2n−2 + · · ·+ c2

= r2nb20 + c2
1− r2n

1− r2

limn→∞ an = 0

limn→∞ vn,n = c2

1−r2

Note that the limit is free of Y0.

limn→∞ Yn ∼ Gsn(0, c2

1−r2 )
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10.2 Brownian Motion

10.2.1 Brownian motion and Wiener process

Defining Brownian motion axiomatically as a special stochastic process

Definition A stochastic process X = {Xt}t≥0 is a Brownian motion if

• t 7→ Xt is continuous (not a counting process, which is discrete and strictly nondecreasing)

• independent increments

• stationary increments

Theorem Xs+t −Xs ∼ Gsn(µt, σ2t) where µ ∈ R, σ2 ∈ [0,∞), both free of s and t.

Proof outline:

By stationarity, Xs+t −Xs has the same distribution as Xt −X0, and we concentrate on the latter here. Take

0 = t0 < t1 < · · · < tn = t such that ti − ti=1 = t
n . Then

Xt −X0 = (Xt1 −Xt0) + (Xt2 −Xt1) + · · ·+ (Xtn −Xtn−1
)

expresses Xt−X0 as the sum of n i.i.d. random variables. Moreover, since X is continuous, the terms on the irght

side are small when n is large. By the central limit theorem, the distribution of the right side is approximately

Gaussian. Since n can be as large as desired, Xt − X0 must have a Gaussian distribution, say, with mean a(t)

and variance b(t). To determine their forms, write

Xs+t −X0 = (Xs −X0) + (Xs+t −Xs)

and note that the two terms on the right side are independent with means a(s) and a(t), and variances b(s) and

b(t). Thus,

a(s+ t) = a(s) + a(t), b(s+ t) = b(s) + b(t).

It follows that a(t) = µt and b(t) = σ2t for some constant µ and some positive constant σ2.

Definition A process W = {Wt}t≥0 is a Wiener process if it is a Brownian motion with W0 = 0,E[Wt] = 0,Var(Wt) = t

Then Wt ∼ Gsn(0, t) and Wt −Ws ∼ Gsn(0, t− s)

Relationship between Brown and Wiener

Let X be a Brownian motion with Xs+t − Xt having mean µt and variance σ2t. Then from Xt − X0 ∼ Gsn(µt, σ2t) and

Wt ∼ Gsn(0, t)
(Xt −X0)− µt

σ
= Wt

Xt = X0 + µt+ σWt

µ is drift coefficient, σ is volatility

Interpret this as a line X0 + µt with deviations vertically about the line.

Further,

E[erWt ] = E[er
√
tZ] = er

2t/2
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10.2.2 Poisson approximation

Large particle surrounded by small molecules

Lt ≡ number of molecules that hit particle from left in [0, t]

Mt ≡ number of molecules that hit particle from right in [0, t]

each hit moves large particle ε amount

Xε
t = displacement over [0, t] = εLt − εMt

{Lt} and {Mt} are independent Poisson processes both with rate λ

E[Lt] = E[Mt] = Var(Lt) = Var(Mt) = λt

E[Xε
t ] = E[εLt − εMt] = ελt− ελt = 0

Var(Xε
t ) = ε2λt+ ε2λt = 2ε2λt

Let Var(Xε
t ) ≡ σ2t (Motivation: we want the variance to be linear with t), then

λ =
σ2

2ε2

Moment generating function:

E
[
erX

ε
t

]
= E

[
er(εLt−εMt)

]
= E

[
erεLt

]
E
[
e−rεMt

]
using the fact that E

[
erεLt

]
=

n∑
k=0

erεke−λt
(λt)k

k!
= e−λteλte

rε

= exp{−λt(1− erε)},

and similarly, that E
[
e−rεMt

]
= exp{−λt(1− erε)},

= exp{−λt(1− e−rε)} exp{−λt(1− erε)}

= exp{λt(erε + e−rε − 2)}

= exp

{
σ2t

2ε2
(erε + e−rε − 2)

}
= exp

{
σ2t

2
· e

rε + e−rε − 2

ε2

}
using l’Hopital’s rule twice,

lim
ε→0

E
[
erX

ε
t

]
= exp

{
1

2
σ2tr2

}
= E

[
erY
]

where Y ∼ Gsn(0, σ2t)

In the last step, we recognized that if Y ∼ Gsn(0, σ2t), then Y√
σ2t

= Z ∼ Gsn(0, 1) and that , as we showed previously,

E
[
erZ
]

= er
2/2, so we have E

[
erY
]

= E
[
e(r
√
σ2t)Z

]
= er

2σ2t/2

So we have

lim
ε→0

P {Xε
t ≤ x} =

∫ x

−∞

1√
2πσ2t

exp

{
− y2

2σ2t

}
dy

If we let Xt = limε→0X
ε
t , we have the following properties for the process {Xt}t≥0:
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• t 7→ Xt is continuous (not a counting process, which is discrete and strictly nondecreasing)

• independent increments

• stationary increments

We call this process a Brownian motion process.

Consider the total distance traveled (not displacement) in [0, t] (call it Tt). Since T εt = εLt + εMt, we have

E[T εt ] = E[εLt + εMt] = 2ελt = 2ε

(
σ2

2ε2

)
t =

σ2t

ε

lim
ε→0

E[T εt ] = lim
ε→0

E[εLt + εMt] = lim
ε→0

σ2t

ε
=∞

So on any finite time interval, the total distance traveled is infinite.

Thus we can say that t 7→ Xt is not differentiable anywhere and is highly oscillatory...

10.2.3 Brownian motion as Gaussian

Let X = {Xt} be a Brownian motion with X0 = 0. Fix n ≥ 1 and 0 ≤ t1 < t2 < . . . < tn. Then Xt1 , Xt2 − Xt1 ,. . .,

Xtn −Xtn−1 are independent and Gaussian. Since the vector (Xt1 , . . . , Xtn) is obtained from a linear transformation of those

increments, (Xt1 , . . . , Xtn) is n-dimensional Gaussian.

Theorem Let X be a Brownian motion with X0 = 0, drift µ, volatility σ. Then X is a Gaussian process with mean function

m(t) = µt and covariance function v(s, t) = σ2(s∧ t). Conversely, if X is a Gaussian process with these mean and covariance

functions, and if X is continuous, then X is a Brownian motion with X0 = 0, drift µ, and volatility σ.

Corollary A process W = {Wt}t≥0 is a Wiener process if and only if it is continuous and Gaussian with E[Wt] = 0 and

Cov(Ws,Wt) = s ∧ t.

Cov(Ws,Wt) = E[(Ws − E[Ws])(Wt − E[Wt])]

= E[WsWt]− E[Ws]E[Wt]

= E[WsWt]

= E[Ws(Ws + (Wt −Ws))] assume WLOG that s < t

= E[W 2
s ] + E[Ws(Wt −Ws)]

= E[W 2
s ] + E[Ws]E[(Wt −Ws)] indep. increments

= E[W 2
s ]

= E[(Ws − 0)2]

= E[(Ws − E[Ws])
2]

= Var(Ws)

= s

Had we chosen t < s, then we would have obtained t instead. So Cov(Ws,Wt) = s ∧ t.

Theorem Let W be a Wiener process. Then the following hold:
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• symmetry: Let W t = −Wt for t ≥ 0, then W is a Wiener process

• scale invariance: Let Ŵt = 1√
c
Wct for some fixed constant c > 0, then Ŵ is a Wiener process

• time inversion: W̃t = tWs/t for t > 0 (note strict inequality) and W̃0 = 0, then W̃ is a Wiener process

Proof

symmetry: W satisfies the definition of Wiener process: W 0 = 0,E[W t] = 0,Var(W t) = t

scale: Ŵ also satisfies the definition. E[Ŵt] = 1√
c
E[Wct] = 0 and Var(Wct) = 1

cVar(Wct) = t

time inversion: E[W̃t] = 0, and

Cov(W̃s, W̃t) = E[W̃sW̃t] = stE[W1/sW1/t] = st

(
1

s
∧ 1

t

)
= s ∧ t

which is true for Wiener processes. However, we need to check the continuity of W̃ at t = 0.

lim
t→0

W̃t = lim
t→0

tW1/t = lim
u→∞

1

u
Wu = 0 = W̃0

Where we used u = 1
t .

The intuitive idea behind this is the strong law of large numbers. Pick δ > 0, u = nδ.

Wnδ = Wδ + (W2δ −Wδ) + · · ·+ (Wnδ −W(n−1)δ) = Y1 + · · ·Yn

Then from the law of large numbers,

lim
n→∞

1

nδ
Wnδ =

1

δ
lim
n→∞

Y1 + · · ·+ Yn
n

=
1

δ
0 = 0

Example Let W be a Wiener process. Let 0 < s < t.

P{Ws ≤ x|Wt = z} = P{W̃s ≤ x|W̃t = z}

= P{sW1/s ≤ x|tW1/t = z}

= P{W1/s ≤ x/s|W1/t = z/t}

= P{W1/s −W1/t = x/s− z/t}

Time inversion allowed us to change a condition on the future to a condition on the past.

Brownian bridge

Let Xt = Wt − tW1 for t ∈ [0, 1]. It is called a “bridge” because it is tied down for t = 0 and t = 1, that is,

X0 = X1 = 0. It is used to model things, such as bonds, whose values change over time, but whose values are

known at the end of time (t = 1).

E[Xt] = 0

Var(Xt) = Var(Wt − tW1) = Var(Wt − t(Wt + (W1 −Wt)) = (1− t)2t− t2(1− t) = (1− t)t

The variance makes sense: it is 0 at t = 0 and t = 1, and reaches its maximum of 1
4 at t = 1

2 .
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10.2.4 Hitting Times for Wiener Processes

We are interested in the hitting time

Ta = inf{t ≥ 0 : Wt > a}

which is the first time the Wiener process has displacement a > 0.

Let us denote Fs = {Wr : r ≤ s} as the “past” from time s.

Markov property of W

Fix s and define

Ŵt = Ws+t −Ws

for t ≥ 0.

Ŵ = {Ŵt} is a wiener process because disjoint increments are independent and because Ŵt1−Ŵt0 ∼ Gsn(0, t1−t0).

Conceptually, this is saying that if we have a Wiener process, then freeze at time s and reset the origins of time

and space to your current time/position, then continue the process, it is still a Wiener process with respect to

the new origin.

Strong Markov property of W

Replace deterministic time s with random time Ta.

Distribution of Ta

P{Wt > 0} = 1
2 because Wt ∼ Gsn(0, t).

P{Ŵt > 0} = 1
2

P{Wt > a|Ta < t} = 1
2

P{Wt > a, Ta < t} = 1
2P{Ta < t}

P{Wt > a} = 1
2P{Ta < t} since W0 = 0 and Wt > a, the Wiener process must have already hit a.

We have found the distribution of Ta: P{Ta < t} = 2P{Wt > a}

Since Wt ∼ Gsn(0, t), then Wt =
√
tZ where Z ∼ Gsn(0, 1), so

P{Ta < t} = 2P{
√
tZ > a} = 2P

{
Z >

a√
t

}
= 2

∫ ∞
a/
√
t

1√
2π
e−z

2/2dz = P{Ta ≤ t}

Remarks

P{Ta <∞} = lim
t→∞

P{Ta < t} = 2

∫ ∞
0

1√
2π
e−z

2/2dz = 2 · 1

2
= 1

This states that for any a <∞, the particle will hit a with probability 1.

pdf of Ta:

d

dt
P{Ta ≤ t} =

ae−a
2/2t

√
2πt3

for t ≥ 0
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expected value:

E[Ta] =

∫ ∞
0

t
ae−a

2/2t

√
2πt3

dt =∞

Although particle will hit every level a with probability 1, the expected time it takes to do so is ∞, no matter

how small a is.

P{Ta < t} = 2P{Wt > a} = 2P{Z > a/
√
t} = P{|Z| > a/

√
t} = P{Z2 > a2/t} = P{a2/Z2 < t}

so Ta has the same distribution as a2/Z2.

Maximum process

Define Mt = maxs≤tWs for t ≥ 0, the highest level reached during [0, t] by the Wiener particle. M0 = 0, and

t→Mt is continuous and nondecreasing, and limn→∞Mt = +∞, since the particle will hit any level a. Between

any two points, there are infinitely many “flats.”

Similarly if we define mt = mins≤tWs, the fact that limn→∞mt = −∞ shows that the set {t ≥ 0 : Wt = 0} is

infinite, as the particle will cross 0 infinitely many times.

To derive the distribution,

P{Mt > a} = P{Ta < t} = 2P{Wt > a} = P{|Wt| > a}

for a ≥ 0. So, Mt ≈ |Wt| (we use ≈ to denote “has the same distribution as”). Since |Wt| =
√
t|Z|, then

P{Mt ∈ dx} = P{|Wt| ∈ dx} = 2
1√
2πt

e−x
2/2tdx

for x ≥ 0.

Expected value and variance:

E[M2
t ] = E[W 2

t ] = Var(Wt) = t

because E[Wt] = 0.

E[Mt] = E[|Wt|] =

∫ ∞
−∞
|x| 1√

2πt
e−x

2/2tdx

= 2

∫ ∞
0

x
1√
2πt

e−x
2/2tdx

=
2t√
2πt

∫ ∞
0

x

t
e−x

2/2tdx

=

√
2t

π

[
−e−x

2/2t
]∞

0

=

√
2t

π
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Var(Mt) = t− 2t

π

= E[M2
t ]− E[Mt]

2

= E[|Wt|2]− 2t

π

= E[W 2
t ]− 2t

π

= t− 2t

π

Hitting 0 and the Arcsine Law of Brownian Motion

Define Rt = (min{u ≥ t : Wu = 0}) − t as the time from t until the next time W touches 0. By resetting the

origin of time/space at time t,

P{Rt ∈ du|Wt = x} = P{T−x ∈ du} = P{x2/Z2 ∈ du}

or in other words, the probability that it takes u time for W to hit 0 given that it has position x at time t is the

same as the probability that another Wiener particle reaches position −x at time u. So, Rt ≈ W 2
t /Z

2 where Z

and Wt are independent.

Since Wt ≈
√
tY where Y ∼ Gsn(0, 1), then

Rt ≈ tY 2/Z2

Note that Y/Z ∼ Cauchy.

Define Dt = Rt + t = inf{u > t : Wu = 0} as the first time that W hits 0 after t.

So

Dt ≈ t+ tY 2/Z2 = t
Y 2 + Z2

Z2

Note that Z2

Y 2+Z2 ∼ beta
(

1
2 ,

1
2

)
, i.e. P

{
Z2

Y 2+Z2 ∈ du
}

= 1

π
√
u(1−u)

Define Gt = sup{s > t : Ws = 0} as the last time that W hits 0 before t.

Suppose s < t. Because Gt < s⇔ Ds > t,

P{Gt < s} = P{Ds > t} = P
{
s
Y 2 + Z2

Z2
> t

}
= P

{
Z2

Y 2 + Z2
<
s

t

}
=

∫ s/t

0

1

π
√
u(1− u)

du

=

∫ arcsin
√
s/t

0

2

π
dx u = sin2 x; du = 2 sinx cosxdx

=
2

π
arcsin

√
s/t

Note that the event {Gt < s} can be interpreted as the event that W does not hit 0 in the time interval (s, t).

Notice also that

Gt ≈ t
Z2

Y 2 + Z2
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10.2.5 Geometric Brownian Motion

Let W be a Wiener process. Fix µ in R and σ > 0. Let

Xt = X0e
µt+σWt

for t ≥ 0. Then X = {Xt}t≥0 is a geometric Brownian motion with drift µ and volatility σ. Letting Y = logX, we have

Yt = Y0 + µt+ σWt

Yt − (Y0 + µt)

σ
= Wt ∼ Gsn(0, t)

where Y is a Brownian motion with drift µ and volatility σ.

Treat X0 as fixed at some value x0. We have that Yt = logXt ∼ Gsn(log x0 +µt, σ2t). We say that Xt follows the log-normal

distribution. It follows from E[erWt ] = er
2t/2 that (for fixed t),

E[Xt] = E[x0e
µt+σWt ] = x0e

µtE[eσWt ] = x0e
µt+σ2t/2

.

If X0 = x0 > 0, then Xt > 0 for all t ≥ 0.

Modeling stock prices

Interpret Xt as the price at time t of a share of stock.

Rs,t =
Xs+t

Xs
= exp[µt+ σ(Ws+t −Ws)]

represents the return at s+t of a dollar invested at time s. Since Ws+t−Ws is independent of the past until s, the

return Rs,t is independent of the price history of the stock up to and including time s (that is, it is independent

of Xs as well).

Theorem Let X = {Xt} be the price process. Suppose that X is continuous and that for 0 ≤ t0 < t1 < · · · < tn,

the returns
Xt1

Xt0

,
Xt2

Xt1

, · · · Xt3

Xt2

over disjoint time intervals are independent, and that the distribution of Xt/Xs depends on s and t only through

t− s.

Then X is necessarily a geometric Brownian motion.

Proof: Let Yt = logXt. Then Y is continuous and has stationary and independent increments, so Y is a Brownian

motion. Then Yt = Y0 + µt+ σWt for some wiener process W . Then X = eY has the form Xt = X0e
µt+σWt .

10.3 Extra stuff

Remember:

X ∼ Y ⇔ E[f(X)] = E[f(Y )],∀f

X independent of Y ⇔ E[f(X)g(Y )] = E[f(X)]E[g(X)],∀f, g

In particular, note that |Wt| ∼Mt, and |Wt| 6= Mt.
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11 Branching Processes

Start with a single progenitor (root node)

Assume the number of children a node has is independent of everything else

Let pk be the probability a man has k children, k ∈ {0, 1, . . .}

Assume p0 > 0 (otherwise tree will never be extinct)

Assume p0 + p1 6= 1 (otherwise, geometric random variable, P{extinct at step n} = pn−1
1 p0, probability of extinction is 1.)

Let Xn be the number of nodes in the nth generation

Let the expected number of sons a man has be µ =
∑∞
n=0 n(pn)

E[Xn+1|Xn = k] = kµ

E[Xn+1] =
∑∞
k=0 E[Xn+1|Xn = k]P{Xn = k} =

∑∞
k=0(kµ)P{Xn = k} = µE[Xn]

E[X0] = 1; E[X1] = µ; E[X2] = µ2; . . .E[Xn] = µn

(µ < 1)⇒ (limn→∞ E[Xn] = 0)⇒ (limn→∞Xn = 0)

(µ > 1)⇒ (limn→∞ E[Xn] =∞)

Definition Let η = P{limn→∞Xn = 0} = P{eventual extinction}

Theorem If we have generating function g(z) =
∑∞
k=0 pkz

k for z ∈ [0, 1], then η is the smallest such solution to g(z) = z.

Theorem: µ ≤ 1 if and only if η = 1; µ > 1 if and only if 0 < η < 1 and η is the unique solution to z = g(z), z ∈ (0, 1).

Proof:

Suppose that the root node has k children. Then the probability of extinction η is the probability that each of

the root’s children’s trees will eventually be extinct. We can view each of these children (1st generation) as root

nodes of their own respective trees, so the probability that each of the children’s trees will eventually be extinct

is also η. The probability that all k lines are extinct is thus ηk. Then we have η =
∑∞
k=0 P{extinction|N =

k}P{N = k} =
∑∞
k=0 pkη

k.

Note the following properties of g(z) =
∑∞
k=0 pkz

k = (p0 + p1z + p2z
2 + · · · ), given the assumptions we made

earlier:
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g(0) = p0 > 0

g(1) =
∑∞
k=0 pk = 1

g(z) increases in z

g′(z) =
∑∞
k=0 kpkz

k−1 = (p1 + 2p2z + 3p3z
2 + · · · ) increases in z

g′(1) =
∑∞
k=0 kpk = µ

We are concerned with when z = g(z) (graph both sides, find the intersections). We have two cases, as shown

above.

Consider the graph of z − g(z). In the picture on the right, this difference reaches a maximum (between the

two intersections). If we define z0 such that this maximum occurs at z = z0, then we have d
dz (z − g(z))

∣∣
z=z0

= 0

which is true iff d
dz (g(z))

∣∣
z=z0

= 1. Since g′(z) is increasing in z, we can conclude that in the second picture,

µ = g′(1) > g′(z0) = 1. The first picture is the case that µ ≤ 1.

Let ηn = P{Xn = 0}.

Then, ηn = P{Xn = 0} ≤ P{Xn+1 = 0} = ηn+1, ∀n, so η0 ≤ η1 ≤ · · ·

η0 = P{X0 = 0} = 0

η1 = P{X1 = 0} = p0

We use a similar argument that we used earlier. If the 1st generation has k children, we can view the n + 1st

generation as the nth generations of each of the k children’s trees.

Thus, ηn+1 =
∑∞
k=0 pk(ηn)k = g(ηn)

We can visually represent this recursive process, shown below.

This shows that η is the smallest solution to z = g(z).

Example
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Suppose pk ∼ Pois(µ) so that pk = e−µ µ
k

k! .

Then g(z) =
∑∞
k=0 e

−µ µk
k! z

k = e−µ
∑∞
k=0

(µz)k

k! = e−µeµz = e−µ(1−z)

Solve z = e−µ(1−z)

Or find limn→∞ ηn:

η1 = p0 = e−µ

ηn+1 = e−µ(1−ηn)

Example Pdf of a binomial distribution

Let there be a series of i.i.d. Bernoulli trials with probability of success p, and let Xn be the indicator variable

for the nth trial. Let the number of successes in n trials be S =
∑n
i=1Xi.

What is the generating function for S?

g(z) =

∞∑
k=0

zkP{S = k} = E[zS ] = E[zX1zX2 · · · zXn ] = E[zX1 ]E[zX2 ] · · ·E[zXn ]

because the Xk are independent.

For all i,

E[zXi ] = z1P{Xi = 1}+ z0P{Xi = 0} = pz + q

So, continuing,

g(z) = (pz + q)n

∞∑
k=0

zkP{S = k} =

n∑
k=0

(
n

k

)
(pz)kqn−k

P{S = k} =

(
n

k

)
pkqn−k

Example Pdf of X + Y if X ∼ Pois(µ) and Y ∼ Pois(ν), independent

E[zX ] =

∞∑
k=0

zkP{X = k} =

∞∑
k=0

e−µ
µk

k!
zk = e−µeµz = e−µ(1−z)

Similarly, E[zY ] = e−ν(1−z)

Now, combining the two, and using the reverse of the procedure we used above,

E[zX+Y ] = E[zX ]E[zY ]
∞∑
k=0

zkP{X + Y = k} = e−(µ+ν)(1−z)

∞∑
k=0

zkP{X + Y = k} =

∞∑
k=0

e−(µ+ν) (z(µ+ ν))k

k!

P{X + Y = k} = e−(µ+ν) (µ+ ν)k

k!

X + Y ∼ Pois(µ+ ν)
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12 Gambler’s Ruin

12.1 Introduction

You have $28. At each stage of the game, a coin is flipped; if heads, you get a dollar, if tails, you lose a dollar. The game

ends when you have either $0 or $100.

Let Xn be your capital after the nth step. The state space is D = {0, 1, . . . , 100}. (Note: imagine an opponent that has

$100−Xn.)

P{Xn+1 = i+ 1|Xn = i} = P{Xn+1 = i− 1|Xn = i} =
1

2
, 1 ≤ i ≤ 99

P{Xn+1 = i|Xn = i} = 1, i ∈ {0, 100}

Note that this is a Markov chain, and that we will use the technique of conditioning on the first step throughout this section.

Question 1 Will the game ever end?

Let

f(i) := P{1 ≤ Xn ≤ 99,∀n ≥ 0|X0 = i}, 0 ≤ i ≤ 100

i.e., the probability that the game continues forever given that X0 = i.

f(i) =

0 i ∈ {0, 100}
1
2f(i+ 1) + 1

2f(i− 1) 1 ≤ i ≤ 99

Note that f(i) is the average of f(i− 1) an f(i+ 1). This means that the graph of these three points is collinear,

and further, that all points {f(i) : i ∈ D} are all collinear. Since f(0) = f(100) = 0, that means

f(i) = 0, 0 ≤ i ≤ 100

or in other words, the game will definitely end.

Question 2 What is the probability that you get $100?

Since the game will end, there exists a finite T such that

T := min{n ≥ 0 : Xn ∈ {0, 100}}

Then the probability that you will end the game with $100, given that X0 = i is

r(i) := P{XT = 100|X0 = i}, 0 ≤ i ≤ 100

r(i) =


0 i = 0

1
2r(i+ 1) + 1

2r(i− 1) 1 ≤ i ≤ 99

1 i = 100

As before, this equation shows that the graph of r(i) consists of collinear points. Since f(0) = 0 and f(100) = c,

we have

r(i) =
i

100
, 0 ≤ i ≤ 100
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Note that because r(i is increasing, the game favors those who are initially rich, so it is not “socially fair.”

However, it is fair in the sense that the coin flips are fair and that your expected winnings

E[XT |X0 = i] = r(i) · · · 100 =
i

100
· 100 = i

which is your initial capital.

Question 3 What is the duration of the game?

Let T be as before. Then the expected value of the duration is

µi := E[T |X0 = i], 0 ≤ i ≤ 100

µi =

0 i ∈ {0, 100}

1 + 1
2µi+1 + 1

2µi−1 1 ≤ i ≤ 99

For 1 ≤ i ≤ 99, you can write µi as 1
2µi + 1

2µi on the LHS, and move things around to get

(µi+1 − µi) = (µi − µi−1)− 2, 1 ≤ i ≤ 99

Then we have

µ1 = µ1 − µ0 = a

µ2 − µ1 = a− 2

µ3 − µ2 = a− 4

...

µi − µi=1 = a− 2(i− 1)

...

µ100 − µ99 = a− 2 · 99

Adding the first i equations, we get

µi = µi − µ0 = a · i− 2
(i− 1)i

2
= a · i− i(i− 1)

Then we have 0 = µ100 = a · 100− 100 · 99, so a = 99 and

µi = 99i− i(i− 1) = (100− i)i

Note that µi is maximized at i = 50.

12.2 Designing a fair game

Suppose we have different coins for different states.

P{Xn+1 = i+ 1|Xn = i} = pi, P{Xn+1 = i− 1|Xn = i} = qi, pi + qi = 1, 1 ≤ i ≤ 99

We can show that the game will end in finite time, as before.
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f(i) := P{1 ≤ Xn ≤ 99,∀n ≥ 0|X0 = i}, 0 ≤ i ≤ 100

i.e., the probability that the game continues forever given that X0 = i.

f(i) =

0 i ∈ {0, 100}

pif(i+ 1) + qif(i− 1) 1 ≤ i ≤ 99

f(i) is still monotonic. Whether f(i+ 1) ≥ f(i− 1) or f(i+ 1) ≤ f(i− 1), it is clear that f(i) = pif(i+ 1) + qif(i− 1) lies

between them. Then, as before, f(0) = 0 for 1 ≤ i ≤ 100, and so the game definitely ends.

Letting T and r be as before,

r(i) := P{XT = 100|X0 = i}, 0 ≤ i ≤ 100

r(i) =


0 i = 0

pir(i+ 1) + qir(i− 1) 1 ≤ i ≤ 99

1 i = 100

As before, r(i) is monotonic. Suppose we want to exact justice so that you help the oor, but when the rich become poor,

they are helped the same amount. For example, you want r(72) = 1− r(28) because when you have $72, your opponent has

$28, and should have the same amount of help as you did when you had $28.

r(i) = 1− r(100− i), 0 ≤ i ≤ 100, r(0) = 0

Then the graph of r(i), which still hits (0, 0) and (100, 1) and is still monotone, appaears to flatten out when i is near 50.

From earlier,

r(i) = pir(i+ 1) + qir(i− 1)

r(i) = pir(i+ 1) + (1− pi)r(i− 1)

r(i)− r(i− 1) = pi(r(i+ 1)− r(i− 1))

pi =
r(i)− r(i− 1)

r(i+ 1)− r(i− 1)

With the “justice” enacted, we can see that pi = 1− p100−i.

However, r(i) can be increasing without implying that pi is decreasing.

12.3 Unfair game

Let c be the total capital instead of $100. Let there be one coin for all states, but with probability p and q = 1− p =6= p for

winning and losing a dollar respectively. Now the duration of the game T is the first time you have $0 or $c, and as before,

is finite. Let

ri := P{XT = c|X0 = i}, 0 ≤ i ≤ c

ri =


0 i = 0

pri+1 + qri−1 1 ≤ i ≤ c

1 i = c
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For 1 ≤ i ≤ c, replacing ri with pri + qri and moving things around, we have

p(ri+1 − ri) = q(ri − ri−1), 1 ≤ i ≤ c− 1

Letting r = p
q for convenience, we have

r1 = r1 − r0 = a

r2 − r1 = ar

r3 − r2 = ar2

...

ri − ri−1 = ari−1

...

rc − rc− 1 = arc−1

Summing the first i equations, we have

ri = a
1− ri

1− r
, 1 ≤ i ≤ c

Since rc = 1, we have a =
1− r
1− rc

, and thus

ri =
1− ri

1− rc
=

1−
(
p
q

)i
1−

(
p
q

)c , 0 ≤ i ≤ c, p 6= q

This also works for r = 1:

lim
r→1

1− ri

1− rc
=
i

c

as before.

The shape of ri as i varies depends on whether r < 1 or r > 1. If p > q, the game is favorable, and ri increases with i as a

concave function. If p < q, ri increases with i but is convex

To find

µi := E[T |X0 = i]

we have again

µi =

0 i ∈ {0, c}

1 + pµi+1 + qµi−1 1 ≤ i ≤ c

Using the same technique, and letting r = q
p and s = 1

p ,

pµi + qµi = 1 + pµi+1 + qµi−1

q(µi − µi−1) = 1 + p(µi+1 − µi)

µi+1 − µi = r(µi − µi−1)− s, 1 ≤ i ≤ c− 1
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Then

µ1 = µ1 − µ0 = a

µ2 − µ1 = ra− s

µ3 − µ2 = r2a− rs− s
...

µi − µi−1 = ri−1a− ri−2s− ri−3s− · · · − rs− s
...

µc − µc−1 = rc−1a− rc−2s− rc−3s− · · · − rs− s

Summing the first i equations, we have

µi = a(1 + r + r2 + · · ·+ ri−1)− s(1 + (1 + r) + (1 + r + r2) + · · ·+ (1 + r + · · ·+ ri−2))

=
a

1− r
(1− ri)− s

1− r
(1− r + 1− r2 + 1− r3 + · · ·+ 1− ri−1)

=
a

1− r
(1− ri)− s

1− r

(
i− 1− ri

1− r

)
=

a

1− r
(1− ri)− si

1− r
+ s

1− ri

(1− r)2
, 1 ≤ i ≤ c

Then 0 = µc gives us a =
sc

1− rc
− s

1− r
, and thus

µi =
1

p− q

(
c

1− ri

1− rc
− i
)
, 0 ≤ i ≤ c

where we replace s = 1
p but not r = q

p . Recall that for all this, p 6= q. Since we found earlier that ri =
1− ri

1− rc
, we have

µi =
1

p− q
(cri − i)

What is the intuition behind this?

13 Appendix

13.1 dx notation

P{a ≤ X ≤ b} =

∫ b

a

f(x)dx

P{X ∈ dx} ≡ f(x)dx

This comes from

P{x ≤ X ≤ x+ ε} ≈ f(x)ε

On the left side, dx represents an interval, but on the right side, it represents the length of the interval. In higher-level

probability, we use λ(dx) to represent the length of the interval, in order to avoid confusion.
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Also,

P{a ≤ X ≤ b} =

∫ b

a

P{X ∈ dx}

P{X ∈ dx, Y ∈ dy} ≡ f(x, y)dxdy

Suppose Y = 2X and we know the pdf of X: P{X ∈ dx} = f(x)dx. What is the pdf of Y ?

E[Y ] = E[2X] =

∫ ∞
−∞

2xf(x)dx =

∫ ∞
−∞

yf(y/2)
dy

2

So P{Y ∈ dy} = 1
2f(y/2)dy Don’t forget to change the limits of integration!

In general,

P
{
X ∈ dx− a

b

}
= f

(
x− a
b

)
dx

b

13.2 Leibniz’s Rule

d

dy

∫ g(y)

f(y)

h(x, y)dx =
dg(y)

dy
h(g(y), y)− df(y)

dy
h(f(y), y) +

∫ g(y)

f(y)

∂

∂y
h(x, y)dx

Example that uses Leibniz’s Rule

Let X ∼ expon(1), let 0 = a0 < a1 < a2 < · · · s.t. ∀x ∈ (0,∞), ∃i : ai < x < ai+1.

Let Y = yi if ai < X ≤ ai+1; assume ai < yi ≤ ai+1

Choose {yi} to minimize E[|X − Y |].

Let there be indicator functions

Ii =

{
1, ai < X ≤ ai+1

0, otherwise

Then

E[|X − Y |] =

∫ ∞
0

E[|x− Y |X = x]P{X ∈ dx}

=

∫ ∞
0

∞∑
i=0

|x− yi|IiP{X ∈ dx}

=

∞∑
i=0

∫ ai+1

ai

|x− yi|P{X ∈ dx}

Minimize E[|X − Y |] by minimizing each
∫ ai+1

ai
|x− yi|P{X ∈ dx}

(Remove the absolute value signs)

∂

∂yi

∫ ai+1

ai

|x− yi|P{X ∈ dx} =
∂

∂yi

∫ yi

ai

(yi − x)P{X ∈ dx}+
∂

∂yi

∫ ai+1

yi

(x− yi)P{X ∈ dx}

=

(
1(yi − yi)P{X ∈ dx} − 0(yi − yi)P{X ∈ dx}+

∫ yi

ai

1P{X ∈ dx}
)

−

(
(1(yi − yi)P{X ∈ dx} − 0(yi − yi)P{X ∈ dx}+

∫ yi

ai+1

1P{X ∈ dx}

)

=

∫ ai+1

ai

P{X ∈ dx}

etc.
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13.3 Average

If an → L, then

lim
m→∞

1

m

m∑
n=0

an = L

Proof

Given ε > 0, ∃N1 > 0 such that n ≥ N1 implies |an − L| < ε/2. Then, this implies that for m ≥ N1,

1

m
((aN1+1 − L) + (aN1+2 − L) + · · ·+ (am − L))

≤ 1

m
(|aN1+1 − L|+ · · ·+ |am − L|)

<
1

m
(m−N1)

ε

2

≤ 1

m
m
ε

2

=
ε

2

Now that N1 is fixed, we can choose some N2 such that

N2 >
2

ε
((a1 − L) + (a2 − L) + · · ·+ aN1

− L))

Then, m ≥ N2 implies
1

m
((a1 − L) + · · ·+ (aN1

− L)) <
ε

2

Thus, m ≥ N = max{N1, N2} implies that

1

m
((a1 − L) + · · ·+ (aN1 − L) + (aN1+1 − L) + · · ·+ (am − L)) <

ε

2
+
ε

2

so,

lim
m→∞

1

m

m∑
n=0

(an − L) =

(
lim
m→∞

1

m

m∑
n=0

)
− L = 0
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