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1 Finite probability spaces

Definition 1.1.

• A finite probability space is a finite set Ω = {ω1, . . . , ωN} with numbers p1, . . . , pN ∈ [0, 1] such
that

∑
n pn = 1. We will only consider finite probability spaces in this section.

• An event is a subset A of Ω.

• The set of all events is denoted 2Ω.

• The probability measure on Ω corresponding to p1, . . . , pN is the map P : 2Ω → [0, 1] defined by
P (A) :=

∑
n:ωn∈A pn.

• A [real] random variable is a function X : Ω→ R.

• A collection of events F is an algebra if

1) Ω ∈ F ,

2) A,B ∈ F =⇒ A ∪B ∈ F , and

3) A ∈ F =⇒ Ac ∈ F .

• A random variable X is F-measurable if {X = x} ∈ F for any x ∈ R. Here, {X = x} is shorthand
for {ω ∈ Ω : X(ω) = x}.

Example 1.2.

• If F := {∅,Ω}, then the F-measurable random variables are the constants.

• If F := 2Ω, then every random variable is F-measurable.

Example 1.3. Consider the act of making two coin tosses, and let Ω := {hh, ht, th, tt}. Algebras can
represent various states of knowledge. For instance, the algebra F1 := {∅, {hh, ht}, {th, tt},Ω} represents
[in some sense] the knowledge of one coin flip, while F2 := 2Ω refines this algebra and represents the knowledge
of both coin flips. This will be made clearer when we introduce the concept of atoms.

We list some properties of P .

• P (∅) = 0.

• P (Ω) = 1.

• P (A ∪B) = P (A) + P (B)− P (A ∩B).

• P (Ac) = 1− P (A).

Definition 1.4.

• We say X = Y a.s. (equal almost surely) if P (X = Y ) = 1.

• We say X
d
= Y (equal in distribution) if P (X = x) = P (Y = x) for all x ∈ R.

Note that almost sure equality implies equality in distribution. The following example shows that the
converse is false.

Example 1.5. Let Ω := {hh, ht, th, hh} as before, and let X(hh) = 2, X(ht) = X(th) = 0, and X(tt) = −2.

If Y := −X, then X
d
= Y but P (X = Y ) = 1/2.

Definition 1.6. The expected value of a random variable X is

E[X] :=

N∑
n=1

pnX(ωn).
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Note that a random variable can be interpreted to be the element (X(ω1), . . . , X(ωN ))T ∈ Rn.
The expectation has the following properties.

• Linearity. E[aX + Y ] = aE[X] + E[Y ] for any c ∈ R and random variables X,Y .

• Positivity. If X ≥ 0 a.s., then E[X] ≥ 0.

• Continuity. If Xk(ω)→ X(ω) a.s., then E[Xk]→ E[X].

One might remark that formalisms like “almost surely” are meaningless in the discrete case, but they
become relevant when we transition to the continuous case; consider taking the limit of the model of N coin
flips as N →∞.

Definition 1.7. The covariance of two random variables X,Y is defined by

Cov(X,Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X] E[Y ].

The variance of a random variable is

Var(X) := Cov(X,X) = E[(X − E[X])2] = E[X2]− E[X]2.

The covariance and variance satisfy these properties.

• Symmetry. Cov(X,Y ) = Cov(Y,X).

• Bilinearity. Cov(aX + Y,Z) = aCov(X,Z) + Cov(Y,Z).

• Shift invariance. Cov(X + a, Y ) = Cov(X,Y ).

• Var(X) ≥ 0.

• Var(X) = 0 =⇒ X = E[X] a.s.

• Cauchy-Schwarz. |Cov(X,Y )| ≤
√

Var(X) Var(Y ), with equality if and only if X−E[X] is a multiple
of Y − E[Y ] a.s.

The correlation is a scale-invariant version of covariance, defined to be

ρ(X,Y ) :=

{ Cov(X,Y )√
Var(X) Var(Y )

if Var(X) Var(Y ) > 0

0 otherwise
.

By Cauchy-Schwarz, the −1 ≤ ρ(X,Y ) ≤ 1.

Definition 1.8. Events A1, . . . , AM are independent if for any m ∈ {1, . . . ,M} and 1 ≤ j1 < j2 < · · · <
jm ≤M , we have

P

(
m⋂
k=1

Ajk

)
=

m∏
k=1

P (Ajk).

Random variables X1, . . . , XM are independent if for any x1, . . . , xM ∈ R, the events {X1 = x1}, . . . ,
{XM = xM} are independent.

Proposition 1.9. For random variables X1, . . . , XM on a finite probability space, the following are equiva-
lent.

(i) X1, . . . , XM are independent.

(ii) For any f1, . . . , fM : R→ R,

E

[
M∏
m=1

fm(Xm)

]
=

M∏
m=1

E[fm(Xm)].
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(iii) For any u ∈ RM , and letting X = (X1, . . . , XM ),

E[exp(iuTx)] =

M∏
m=1

E[exp(iumXm)].

Corollary 1.10. If X1, . . . , XM are independent random variables, then g1(X1), . . . , gM (XM ) are indepen-
dent for any g1, . . . , gM : R→ R.

Corollary 1.11. If X and Y are independent, then Cov(X,Y ) = 0. However, the converse does not hold.

Definition 1.12. A probability measure P is absolutely continuous with respect to another probability
measure Q if Q(A) = 0 implies P (A) = 0 for any subset A of Ω. We denote this P � Q.

We say P is equivalent to Q if P � Q and Q� P . We denote this P ∼ Q.

Definition 1.13. The indicator function of a set A is a function defined by

1A(x) :=

{
1 x ∈ A,
0 x /∈ A.

Lemma 1.14. Let Z be a random variable that is nonnegative almost surely and satisfies EP [Z] = 1. Then

Q(A) := Ep[1AZ]

is a probability measure with elementary probabilities qn := pnZ(ωn). Moreover, Q� P .

Proof. It is clear that qn := Q({ωn}) = EP [1{ωn}Z] = pnZ(ωn) and that qn ≥ 0 whenever pn > 0. Moreover,

Q(Ω) =
∑N
n=1 pnZ(ωn) = EP [Z] = 1. This shows that qn ≤ 1 whenever pn > 0.

Theorem 1.15 (Elementary version of the Radon-Nikodym derivative). Let P and Q be probability measures
on Ω, with Q � P . Then there exists a random variable Z that is nonnegative almost surely satisfying
EP [Z] = 1 and Q(A) = EP [1AZ] for any subset A of Ω.

Proof. Let Z(ωn) := qn/pn whenever pn > 0. [The values of Z(ωn) when pn = 0 are irrelevant.]

In the following we assume p1, . . . , pN > 0.

Definition 1.16. An atom A of an algebra F is a set in F \ {∅} such that ∅ and A are the only subsets
of A in F . In other words, A is “indivisible” in F .

Note that for every algebra F there exist finitely many atoms A1, . . . , AM such that Ω =
⋃M
m=1Am and

Ai ∩Aj = ∅ when i 6= j. F consists of ∅ and all unions of the Am.

Definition 1.17. Let X : Ω → R be a random variable taking the values x1, . . . , xM ∈ R, M ≤ N . The
algebra generated by X, denoted α(X), is the algebra with atoms {X = x1}, . . . , {X = xm}. It is the
coarsest algebra on Ω with respect to which X is measurable.

This is how algebras encode knowledge or information. In α(X), knowledge of the value of X(ω) deter-
mines the unique atom of the algebra α(X) that contains ω. In finer algebras, it is not always possible to
identify the atom that contains ω by only observing X(ω).

Definition 1.18.

• Let A,B ∈ 2Ω and P (B) > 0. The conditional probability of A given B is defined by

P (A | B) =
P (A ∩B)

P (B)
.
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• Let X be a random variable, and let F be an algebra with atoms A1, . . . , AM . The conditional
expectation of X with respect to F is the random variable defined by

E[X | F ](ω) :=
1

P (Am)

∑
ωj∈Am

X(ωj)pj where Am is the [unique] atom containing ω.

Note that E[X | F ] is constant on each atom and is therefore F-measurable.

• Let X and Y be random variables. We define

E[X | Y ] := E[X | α(Y )].

• Let A ∈ 2Ω and let F be an algebra. We define

P (A | F) := E[1A | F ].

• If A ∈ 2Ω and let F be an algebra. We define

P (A | Y ) := E[1A | Y ].

Proposition 1.19. Let Ω = {ω1, . . . , ωN} be a finite probability space with pn = P [ωn] > 0 for all n, X a
random variable on Ω and F an algebra of subsets of Ω with atoms A1, . . . , AM .

a) E[X | F ] is F-measurable.

b) E[X | F ] = E[X] if F = {∅,Ω}.

c) E[X | F ] = X if X is F-measurable.

d) E[X | F ] ≥ 0 if X ≥ 0.

e) E[XY + Z | F ] = X E[Y | F ] + E[Z | F ] if X is F-measurable.

f) E[E[X | F ] | G] = E[X | G] for every sub-algebra G of F .

g) E[X | F ] = E[X] if X is independent of F .

h) E[X | F ] is the unique minimizer of the quadratic optimization problem

minimize E[(X − Y )2)] over all F-measurable random variables Y .

That is, E[X | F ] is the projection of X to the space of F-measurable random variables with respect to
the norm ‖X‖2 = E[X2]1/2, or in other words, E[X | F ] is the best least-squares estimate of X given the
information contained in F .

Definition 1.20. Let (Ω, P ) and (Ω′, P ′) be [finite] probability spaces. Then (Ω×Ω′, P⊗P ′) is a probability
space, where Ω× Ω′ := {(ω, ω′) : ω ∈ Ω, ω′ ∈ Ω′} is the Cartesian product and where

(P ⊗ P ′)((ω, ω′)) := P (ω)P ′(ω′).

Note that this construction gives “independence” to each component of the space and preserves the
probabilities when embedding from the original space. More explicitly, let A ⊂ Ω, B ⊂ Ω′, X : Ω → R,
and Y : Ω′ → R. The random events Â := A × Ω′ and B̂ := Ω × B are independent in (Ω × Ω′, P ⊗ P ′).
Moreover, (P ⊗ P ′)(Â) = P (A) and (P ⊗ P ′)(B̂) = P ′(B). The random variables X̂((ω, ω′)) := X(ω) and

Ŷ ((ω, ω′)) := Y (ω′) are independent on (P ⊗ P ′)(Â) = P (A). Moreover, X
d
= X̂ and Y

d
= Ŷ .

Example 1.21. Let Ω := {0, 1}, P (0) := q, P (1) := p, and p+ q = 1. Then the random variable defined by
ξ(0) := 0 and ξ(1) := 1 is called a Bernoulli random variable with parameter p.

Example 1.22. We consider the product of the previous probability space with itself n times. Let Ω :=
{0, 1}n, and let P ((a1, . . . , an)) := p

∑
i aiq1−

∑
i ai . If we define ξi((a1, . . . , an)) := ai, then ξ1, . . . , ξn are

independent Bernoulli random variables with parameter p.

Example 1.23. Let S :=
∑n
i=1 ξi, where ξi are as defined in the previous example. Then P (S = k) =(

n
k

)
pkqn−k for k = 0, . . . , n. S is called a binomial random variable with parameters n and p. Its expectation

is E[S] =
∑n
i=1 E[ξi] = np.
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2 Countable probability spaces

Definition 2.1. A countable probability space consists of a countable set Ω = {ω1, ω2, . . . , } with numbers
p1, p2, . . . ≥ 0 such that

∑
n≥1 pn = 1. The probability measure P , events, and random variables can be

defined analogously from the case of finite probability spaces.

Example 2.2 (Poisson distribution). Let Ω = {0, 1, . . . , }, and let P (n) = e−λ λ
n

n! , where λ ≥ 0. The random
variable defined by X(n) := n is said to follow the Poisson distribution with parameter λ.

Example 2.3 (Geometric distribution). Let Ω = {1, 2, . . .}, and let P (n) = (1 − p)n−1p. The random
variable X(n) := n is said to follow the geometric distribution with parameter p.

3 General probability spaces

3.1 σ-algebras

Definition 3.1. A system F of subsets of a nonempty set Ω is a σ-algebra if it is an algebra (see Defini-
tion 1.1) satisfying

⋃
n≥1An ∈ F for every sequence A1, A2, . . . ∈ F .

Consequently, the intersection of a sequence of sets in F is also in F .

Definition 3.2. A pair (Ω,F) of a nonempty set Ω and an associated σ-algebra F is called a measurable
space.

Definition 3.3. A measure on a measurable space is a mapping µ : F → [0,∞] (infinity is included) such
that µ(∅) = 0 and

µ

⋃
n≥1

An

 =
∑
n≥1

µ(An), for any sequence of [pairwise] disjoint sets A1, A2, . . . ∈ F .

This last property is called countable additivity or σ-additivity.

Definition 3.4. Let µ be a measure on Ω. It is probability measure if µ(Ω) = 1. It is a finite measure
if µ(Ω) < ∞. It is σ-finite if there exist a sequence Ω1,Ω2, . . . ∈ F such that µ(Ωn) < ∞ for all n and⋃
n≥1 Ωn = Ω.

Definition 3.5. A measure space (Ω,F , µ) is a measurable space with a measure. It is complete if for
any B ∈ F such that µ(B) = 0, any subset A ⊂ B satisfies A ∈ F and µ(A) = 0.

Every measure space (Ω,F , µ) can be completed by defining the σ-algebra

F := {A ∪ C : C ∈ F , A ⊂ B,B ∈ F , µ(B) = 0}

with the measure µ(A ∪ C) := µ(C).

Definition 3.6. We call a set function µ : F → [0,∞] on an algebra F of subsets of Ω a finitely additive
measure if µ(∅) = 0 and µ(A ∪B) = µ(A) + µ(B) for disjoint A,B ∈ F .

Theorem 3.7. Let µ be a finitely-additive measure on an algebra (not σ-algebra) F of subsets of a set Ω
such that µ(Ω) <∞. Then the following are equivalent.

1) µ is σ-additive:

µ

⋃
n≥1

An

 =
∑
n≥1

µ(An)

for any sequence of [pairwise] disjoint sets A1, A2, . . . ∈ F such that
⋃
n≥1An ∈ F .
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2) µ is continuous from below:

µ

⋃
n≥1

An

 = lim
n→∞

µ(An)

for any increasing sequence A1 ⊂ A2 ⊂ · · · of sets in F such that
⋃
n≥1An ∈ F .

3) µ is continuous from above:

µ

⋂
n≥1

An

 = lim
n→∞

µ(An)

for any decreasing sequence A1 ⊃ A2 ⊃ · · · of sets in F such that
⋂
n≥1An ∈ F .

4) µ is continuous at ∅:
lim
n→∞

µ(An) = 0

for any decreasing sequence A1 ⊃ A2 ⊃ · · · of sets in F such that
⋂
n≥1An = ∅.

Definition 3.8. A monotone class M is a collection of subsets of a set Ω such that

1)
⋃
n≥1An ∈M for any increasing sequence A1 ⊂ A2 ⊂ · · · of sets An ∈M, and

2)
⋂
n≥1An ∈M for any decreasing sequence A1 ⊃ A2 ⊃ · · · of sets An ∈M.

Note that any σ-algebra is also a monotone class.

Definition 3.9. A Dynkin system D is a collection of subsets of a set Ω such that

1) Ω ∈ D.

2)
⋃
n≥1An ∈ D for every sequence of pairwise disjoint sets A1, A2, . . . in D.

3) Ac ∈ D for every A ∈ D.

Note that any σ-algebra is also a Dynkin system.

Lemma 3.10. The following conditions are equivalent to the above three conditions.

1’) Ω ∈ D.

2’) B \A ∈ D for all A,B ∈ D such that A ⊂ B.

3’)
⋃
n≥1An ∈ D for every increasing sequence of sets A1 ⊂ A2 ⊂ · · · in D.

Lemma 3.11. The arbitrary [not necessarily countable] intersection of σ-algebras is also a σ-algebra. The
same statement holds after replacing “σ-algebra” with either “Dynkin systems” or with “monotone classes.”

Definition 3.12. Let E be a nonempty collection of subsets of Ω. Then σ(E) denotes the intersection
of all σ-algebras containing E , and is called the σ-agebra generated by E . It is the “smallest” σ-algebra
containing E , in that any σ-algebra containing E must also contain σ(E). We let δ(E) and µ(E) denote the
Dynkin system generated by E and the monotone class generated by E respectively, which are defined
analogously.

Lemma 3.13. An algebra A is a σ-algebra if and only if it is a monotone class.

Proof. All σ-algebras are monotone classes, so we need only show the other direction. Let A be an algebra
that is a monotone class. We only need to show that A is closed under countable unions. Let A1, A2, . . . be
a sequence of subsets in A. The sets Bn :=

⋃n
k=1Ak are in A because A is an algebra. Then, using the fact

that Bn form an increasing sequence, we have⋃
n≥1

An =
⋃
n≥1

Bn ∈ A.
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The following principle is a tautology, but is the key technique that appears multiple times in the proof
of the monotone class theorem.

Lemma 3.14 (Principle of good sets). The statement “all elements of H satisfy property P” is equivalent
to “H ⊂ {a : a satisfies P}.”

Theorem 3.15 (Monotone class theorem). If A is an algebra, then

µ(A) = σ(A).

Proof. Because σ-algebras are monotone classes, we have µ(A) ⊂ σ(A). To show the reverse inclusion, note
that by Lemma 3.13, it suffices to show that µ(A) is an algebra, since then µ(A) would be a σ-algebra
containing A, and thus must contain σ(A) by definition.

1) Ω ∈ A ⊂ µ(A) because A is an algebra.

2) Fix S ∈ µ(A). We would like to show that Sc ∈ µ(A). It suffices to show that

µ(A) ⊂ B := {S ⊂ Ω : Sc ∈ µ(A)}.

We claim B is a monotone class containing A as a subset.

• Because A is an algebra, S ∈ A implies Sc ∈ A, so A ⊂ B.

• We now show B is a monotone class. Suppose A1, A2, . . . is an increasing sequence of sets in B. To
show that

⋃
n≥1An is also in B, note that because Acn ∈ µ(A) (by definition of B) and because µ(A)

is a monotone class, we know ⋃
n≥1

An

 =
⋂
n≥1

Acn

is in µ(A). A similar argument shows why
⋂
n≥1An is in B if A1 ⊃ A2 ⊃ · · · in B.

By definition of µ(A) being the “smallest” monotone class containing A, we must have µ(A) ⊂ B as
desired.

3) Fix S ∈ µ(A) we would like to show that for any T ∈ µ(A), we have S ∪ T ∈ µ(A). Define

NS := {T ⊂ Ω : S ∪ T ∈ µ(A)}.

We would like to show µ(A) ⊂ NS . We claim NS is a monotone class containing A.

• We show NS is a monotone class. If A1, A2, . . . is an increasing sequence of sets in NS , then
(S∪An)n≥1 is an increasing sequence of sets in µ(A). Since µ(A) is a monotone class,

⋃
n≥1(S∪An) =

S∪
⋃
n≥1An is in µ(A), implying

⋃
n≥1An is in NS . A similar argument shows that the intersection

of a decreasing sequence of sets in NS is also in NS .

• We show A ⊂ NS . This will be implied if we show the stronger statement that U ∪V ∈ µ(A) for any
U, V ∈ A. Fix U ∈ A and let NU := {V ⊂ Ω : U ∪ V ∈ µ(A)}.1 We would like to show µ(A) ⊂ NU .
We claim NU is a monotone class containing A.

– A ⊂ NU is clear because A is an algebra.

– NU is a monotone class by the same argument we used for NS above.

By the definition of µ(A) being the “smallest” monotone class containing A, we have µ(A) ⊂ NU ,
and thus A ⊂ NU as desired.

By the definition of µ(A) being the “smallest” monotone class containing A, we have µ(A) ⊂ NS , proving
that S ∪ T ∈ µ(A) for any T ∈ µ(A).

1This is the identical to the definition of NS , but here U ∈ A, which is in some sense an improvement over S ∈ µ(A).
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To summarize, we have shown that the monotone class µ(A) is an algebra, so by Lemma 3.13, it is a σ-algebra
containing A, and thus contains σ(A).

Lemma 3.16. A Dynkin system D that is closed under finite intersection is a σ-algebra.

Proof.

1) Ω ∈ D because D is a Dynkin system.

2) If A ∈ D, then Ac ∈ D because D is a Dynkin system.

3) Let A1, A2, . . . be a sequence of sets in D. Then Acn ∈ D for all n (definition of Dynkin system) and the

sets Bn := An ∩
⋂n−1
k=1 A

c
k are in D as well (closure under finite intersection). Since the Bn are disjoint,

we have ⋃
n≥1

An =
⋃
n≥1

Bn ∈ D.

The following theorem is a version of the monotone class theorem for Dynkin systems, and the proof is
identical in spirit to the previous one.

Theorem 3.17 (Variant of the monotone class theorem). If E is a nonempty collection of subsets of Ω that
is closed under finite intersection, then

δ(E) = σ(E).

Proof. Because all σ-algebras are Dynkin systems, we have δ(E) ⊂ σ(E) because δ(E) is contained in any
Dynkin system containing E . To show the reverse inclusion, note that by Lemma 3.16, it suffices to show
that δ(E) is closed under finite intersection, since then δ(E) would be a σ-algebra containing E , and thus
must contain σ(E) by definition.

Fix A ∈ δ(E). We would like to show that A ∩B ∈ δ(E) for any B ∈ δ(E). It suffices to show that

δ(E) ⊂ NA := {B ⊂ Ω : A ∩B ∈ δ(E)}.

• We claim NA is a Dynkin system.

1) Ω ∈ NA because A ∩ Ω = A ∈ δ(E).

2) Given a sequence A1, A2, . . . of disjoint sets in NA, we claim
⋃
n≥1An is also in NA. Indeed, since

(A ∩An)n≥1 is a sequence of disjoint sets in the Dynkin system δ(E), we have

A ∩
⋃
n≥1

An =
⋃
n≥1

(A ∩An) ∈ D.

3) If B ∈ NA, then A ∩B ∈ δ(E). Thus,

A ∩Bc = (Ac ∪B)c = (Ac ∪ (A ∩B))c ∈ δ(E)

because Ac and A ∩B are disjoint sets in the Dynkin system δ(E). So, Bc ∈ NA as well.

• We also claim that E ⊂ NA. This will be implied if we show the stronger statement that U ∩ V ∈ δ(E)
for any U, V ∈ E . Fix U ∈ E , and let NU := {V ⊂ Ω : U ∩ V ∈ δ(E)}. We would like to show
δ(E) ⊂ NU . We claim NU is a Dynkin system containing E .

– E ⊂ NU is clear because E is closed under finite intersection by assumption.

– NU is a Dynkin system by the same argument used for NA above.

Since NU is a Dynkin system containing E , so by definition δ(E) ⊂ NU .

We have shown that NA is a Dynkin system containing E , so by definition δ(E) ⊂ NA, i.e., δ(E) is closed
under finite intersection. By Lemma 3.16, δ(E) is a σ-algebra containing E , so σ(E) ⊂ δ(E) by definition.
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Corollary 3.18. Let P,Q be probability measures on (Ω, σ(E)) where E is a collection of subsets of Ω that
is closed under finite intersection. If P = Q on E, then P = Q on σ(E).

Proof. Let D := {A ∈ σ(E) : P (A) = Q(A)}. By assumption, E ⊂ D. Moreover, D is a Dynkin system, due
to the definition of a probability measure. So, δ(E) ⊂ D by definition. By Theorem 3.17, δ(E) = σ(E), so
we have σ(E) ⊂ D, that is, P (A) = Q(A) for any A ∈ σ(E).

Definition 3.19. The Borel σ-algebra on a topological space is the σ-algebra generated by the collection
of open sets.

Lemma 3.20. The σ-algebras on R generated by the following collections are the same: the Borel σ-algebra
on R, denoted B(R).

1) The open sets in R.

2) The half-open intervals (a, b] where a < b, a, b ∈ R.

3) The intervals (−∞, x] for x ∈ R.

Proof. Let B1,B2,B3 be the respective σ-algebras generated by the three collections. To show containment,
it suffices to show that one σ-algebra contains the generators of another. We remark that any open set in R
can be written as the countable union of disjoint open intervals.

• B3 ⊂ B2 because (−∞, x] =
⋃
n≥1(x− n, x].

• B2 ⊂ B3 because (a, b] = (−∞, b] ∩ (−∞, a]c.

• B1 ⊂ B2 because (a, b) =
⋃
n≥1(a, b− 1/n].

• B2 ⊂ B1 because (a, b] =
⋂
n≥1(a, b+ 1/n).

Corollary 3.21. A probability measure P on (R,B(R)) is uniquely determined by its cumulative density
function (cdf) defined by

F (x) = P ((−∞, x]).

Proof. Suppose P and Q have the same cdf. Let E := {(−∞, x] : x ∈ R} and note that it is closed under
finite intersection. Since P and Q agree on E , they also agree on σ(E) by Corollary 3.18. To conclude, note
that Lemma 3.20 implies σ(E) = B(R).

Proposition 3.22. The cdf F of a probability measure on (R,B(R)) satisfies the following properties.

1) F is nondecreasing.

2) F is right continuous, that is,
lim
x↘x0

F (x) = F (x0).

3)
lim

x→−∞
F (x) = 0 and lim

x→∞
F (x) = 1.

Proof. The first and third properties are clear from the definition of a probability measure. For the second,
suppose we have a sequence (xn)n≥1 that converges monotonically to x from above. Then

lim
n→∞

F (xn)− F (x) = lim
n→∞

P ((−∞, xn])− P ((−∞, x]) = lim
n→∞

P ((x, xn]) = 0.
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3.2 Measurable functions and random variables

Definition 3.23. A function f : (Ω,F)→ (E, E) is measurable if f−1(A) is in F for any A ∈ E .

Lemma 3.24. Fix f : Ω→ E.

• If E is a σ-algebra on E, then σ(f) := {f−1(A) : A ∈ E} is the smallest σ-algebra on Ω such that
f : (Ω, σ(f))→ (E, E) is measurable.

• If F is a σ-algebra on Ω, then σ̂(f) := {A ⊂ E : f−1(A) ∈ F} is the finest (largest) σ-algebra on E
such that f(Ω,F)→ (E, σ̂(f)) is measurable.

Proof. The fact that σ(f) is a σ-algebra follows easily because the pre-image transfers the properties of the
σ-algebra E .

1) σ(f) contains Ω because Ω = f−1(E) and E ∈ E .

2) If B ∈ σ(f), then B = f−1(A) for some A ∈ E . Then Bc = f−1(Ac) is also in σ(f).

3) If B1, B2, . . . is a sequence of sets in σ(f), then there exists a sequence of sets A1, A2, . . . in E such that
Bn = f−1(An) for all n. Then

⋃
n≥1

Bn =
⋃
n≥1

f−1(An) = f−1

⋃
n≥1

An


is in σ(f).

By definition of measurability, any σ-algebra for Ω that makes f measurable must contain σ(f).
Verifying that σ̂(f) is a σ-algebra is also simple.

1) σ̂(f) contains E because f−1(E) = Ω.

2) If A is contained in σ̂(f), then f−1(A) ∈ F . Thus, Ac is also contained, since f−1(Ac) = (f−1(A))c ∈ F .

3) Let A1, A2, . . . be a sequence of sets in σ̂(f), which implies the sets f−1(An) form a sequence of sets in
F . Thus,

f−1

⋃
n≥1

An

 =
⋃
n≥1

f−1(An)

is contained in σ̂(f).

By definition of measurability, any σ-algebra for E that makes f measurable must be contained in σ̂(f).

Lemma 3.25. Let f : (Ω,F)→ (E, E) and g : (E, E)→ (G,G) both be measurable. Then g◦f is measurable.

Lemma 3.26. Let f : Ω → E be a function and let E be a collection of subsets of E (not necessarily an
algebra). Then

σ({f−1(A) : A ∈ E}) = {f−1(A) : A ∈ σ(E)}.

Proof. Let F (and G) be the left-hand (and right-hand) side of the above equality. To show F ⊂ G, it suffices
to show that G is a σ-algebra containing the generator {f−1(A) : A ∈ E} of F . The containment is clear
because E ⊂ σ(E), and the fact that G is a σ-algebra follows from the proof of Lemma 3.24.

To show the reverse containment let H := {A ⊂ E : f−1(A) ∈ F}. We claim it is a σ-algebra containing
E . Indeed, the proof of Lemma 3.24 shows that it is a σ-algebra, and the containment of E follows from the
definition of F . Thus, H ⊃ σ(E), which in turn shows G ⊂ F .

Definition 3.27. A random variable is a measurable function X : (Ω,F)→ (R,B(R)).

Corollary 3.28. A function X : (Ω,F)→ (R,B(R)) is measurable if {X ≤ x} ∈ F for all x ∈ R.
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Proof. Note that {X ≤ x} = X−1((−∞, x]). Let E := {(−∞, x] : x ∈ R}, and recall that σ(E) = B(R) by
Lemma 3.20. By assumption, σ(X−1(A) : A ∈ E}) ⊂ F , but by Lemma 3.26, this implies {f−1(A) : A ∈
B(R)} ⊂ F , i.e., X is measurable.

We remark that we can replace the “≤” of {X ≤ x} in the above corollary with any one of <, >, or ≥,
and the result will still hold. These correspond to other collections that generate the Borel σ-algebra on R.

Proposition 3.29. Let X,Y : (Ω,F)→ (R,B(R)) be random variables. Then X + Y , X − Y , and XY are
random variables. If Y (ω) 6= 0 for all ω ∈ Ω, then X/Y is a random variable as well.

Proof. To show X + Y is measurable, note that

{X + Y ≥ x} =
⋃
q∈Q

({X > q} ∩ {Y > x− q}.

The other cases can be shown similarly, although it is a bit tedious.

Definition 3.30. An extended random variable is a function X(Ω,F) → R := R ∪ {±∞} such that
{X ≤ x} ∈ F for any x ∈ R.

Proposition 3.31. If (Xn)n≥1 is a sequence of extended random variables on (Ω,F), then supnXn and
infnXn are extended random variables.

Proof. This follows if we note {supnXn ≤ x} =
⋂
n≥1{Xn ≤ x} and {infnXn ≥ x} =

⋂
n≥1{Xn ≥ x}.

Lemma 3.32. If (Xn)n≥1 is a monotonically increasing or decreasing sequence of extended random variables,
then their limit X is an extended random variable.

Proof. If the sequence is increasing, then note that {X ≤ x} =
⋂
n≥1{Xn ≤ x}. If the sequence is decreasing,

then note that {X ≥ x} =
⋂
n≥1{Xn ≥ x}.

Proposition 3.33. If (Xn)n≥1 is a sequence of extended random variables, then lim supn→∞Xn and
lim infn→∞Xn are extended random variables.

Proof. Note that lim supn→∞Xn = limn→∞ supk≥nXk and lim infn→∞Xn = limn→∞ infk≥nXk. Since
(supk≥nXk)n≥1 and (infk≥nXk)n≥1 are monotonic sequences of extended random variables (Proposition 3.31),
their limits are also extended random variables by Lemma 3.32. [Alternatively, we could have noted that
lim supn→∞Xn = infn≥1 supk≥nXk and lim infn→∞Xn = supn≥1 infk≥nXk.]

Corollary 3.34. If (Xn)n≥1 is a sequence of extended random variables such that limn→∞Xn(ω) = X(ω)
for all ω ∈ Ω, then X is an extended random variable.

3.3 Extension theorems

Definition 3.35. A collection S of subsets of a nonempty set Ω is a semiring if

1) ∅ ∈ S,

2) A ∩B ∈ S if A,B ∈ S, and

3) for any A,B ∈ S, there exist finitely many pairwise disjoint sets C1, . . . , Cn ∈ S such that A \ B =
C1 ∪ · · · ∪ Cn.

Definition 3.36. A measure on a semiring S is a function µ : S → [0,∞] (includes ∞) such that

1) µ(∅) = 0,

2) for any sequence A1, A2, . . . of pairwise disjoint sets in S such that
⋃
n≥1An ∈ S, we have

µ

⋃
n≥1

An

 =
∑
n≥1

µ(An).
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A finitely additive measure is a function µ that satisfies the above properties, but with the countable
collection in 2) replaced by a finite collection.

Definition 3.37. A measure µ is σ-finite if there exists a sequence Ω1,Ω2, . . . of sets in S such that
µ(Ωn) <∞ for all n and Ω =

⋃
n≥1 Ωn.

The following lemma is a useful tool to check if the conditions for the Carathéodory Extension Theorem
hold.

Lemma 3.38. Let S be a semiring on Ω that contains Ω. A finitely additive measure µ on S such that
µ(Ω) < ∞ is σ-additive if and only if µ(An) → 0 holds for any decreasing sequence A1 ⊃ A2 ⊃ · · · of sets
in S such that

⋂
n≥1An = ∅.

Theorem 3.39 (Carathéodory Extension Theorem). A measure µ on a semiring S can be extended to a
measure on σ(S). If µ is σ-finite, then the extension is unique.

Example 3.40. Let S = {(a, b] ∩ R : −∞ ≤ a, b ≤ ∞}. (Note that a and b can be infinite. Also, R ∈ S.)
This is a semiring on R. Every nondecreasing right-continuous (gives continuity at ∅) function F : R → R
induces a σ-additive measure µF on S given by µF ((a, b]) := F (b)−F (a). [If a, b are infinite, take the limit.]
Then µF has a unique extension to B(R) = σ(S).

If F (x) := x, then µF is the Lebesgue measure.
If limx→−∞ F (x) = 0 and limx→∞ F (x) = 1, then µF is a probability measure on the real line, and F is

its cdf.

Example 3.41. The family of hypercubes (a, b] := (a1, b1] × · · · (an, bn] ∩ Rn forms a semiring on Rn. Let
F : Rn → [0, 1] satisfy the following.

1) ∆a1,b1 · · ·∆an,bnF (x1, . . . , xn) ≥ 0 for all a1 ≤ b1, . . . , an ≤ bn, where the operator ∆ai,bi maps

F (x1, . . . , xn) 7→ F (x1, . . . , xi−1, bi, xi+1, . . . , xn)− F (x1, . . . , xi−1, ai, xi+1, . . . , xn).

[This is the analogue of nondecreasing in higher dimensions and ensures that areas will have have non-
negative measure in the induced measure.]

2) F (x(k))→ F (x) if x
(k)
i ↘ xi for all i = 1, . . . , n. [This is the analogue of right-continuity.]

3) F (x)→ 1 as x1 →∞, . . . , xn →∞.

4) F (x)→ 0 as x1 ↘ y1, . . . , xn ↘ yn for any y1, . . . , yn such that yi = −∞ for at least one i.

Then P (a, b) = ∆a1,b1 · · ·∆an,bnF (x1, . . . , xn) is a probability measure on S with a unique extension to
B(Rn) = σ(S).

An example of such a function F is F (x) := F1(x1) · · ·Fn(xn), a product of one-dimensional cdfs.

Definition 3.42. If F and F ′ are σ-algebras on Ω and Ω′ respectively, then S := {A1×A2 : A1 ∈ F , A2 ∈ F ′}
is a semiring on Ω× Ω′. We define their tensor product by

F ⊗ F ′ := σ(S).

Example 3.43. Let (Ω,F , P ) and (Ω′,F ′, P ′) be two probability spaces. The probability measure (P ⊗
P ′)(A1 ×A2) := P (A1)P ′(A2) uniquely extends to a measure on F ⊗ F ′ = σ(S).

The definition of tensor product allows us to define the Borel σ-algebra on Rn, which we denote by
B(R)⊗n or B(Rn). We would like to generalize from the finite exponent n to arbitrary exponents.

Definition 3.44. Let I be an arbitrary nonempty set (possibly uncountable); we will use it as an index set.
We define RI := {(ωi)i∈I : ωi ∈ R}. Equivalently, we can view the elements of this space as functions rather
than I-tuples, that is, RI := {f : I → R}. For each i ∈ I we let qi : RI → R be the projection defined by
qi(f) := f(i).
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The product σ-algebra B(R)⊗I defined to be the smallest σ-algebra on RI such that every projection qi
is measurable. That is,

B(R)I = σ({q−1
i (B) : i ∈ I,B ∈ B(R)}).

[This is analogous to the construction of the so-called product topology, which is the coarsest topology for
which the projections are continuous.]

Definition 3.45. Let I be a nonempty set. Given any finite tuple (i1, . . . , in) with entries in I, let P i1,...,in

be a probability measure on (Rn,B(Rn)). The family of all such measures is consistent if the following
hold.

1) Permutation invariance. For any finite I-tuple (i1, . . . , in), any permutation π ∈ Sn, and any subset
A1, . . . , An ∈ B(R), we have

P i1,...,in(A1 × · · ·An) = P iπ(1),··· ,iπ(n)(Aπ(i) × · · · ×Aπ(n)).

2) Projection invariance. For any I-tuple (i1, . . . , in) with n ≥ 2 and any subsets A1, . . . , An−1 ∈ B(R),
we have

P i1,...,in−1(A1 × · · · ×An−1) = P i1,...,in(A1 × · · ·An−1 × R).

Theorem 3.46 (Kolmogorov extension theorem). Let {P i1,...,in : finite I-tuples (i1, . . . , in)} be a consistent
family of probability measures on (R,B(R)). Then there exists a unique probability measure P on (RI ,B(R)⊗i)
such that for any finite I-tuple (i1, . . . , in) and subset B ∈ B(R)⊗n, the probability of the cylinder defined by
B coincides with the marginal P i1,...,in . Explicitly,

P ({ω ∈ RI : (ωi1 , . . . , ωin) ∈ B}) = P i1,...,in(B).

This theorem is relevant in the study of stochastic processes: I represents the time space, and the in
represent fixed times.

Corollary 3.47. Let P1, P2, . . . be a sequence of probability measures on (R,B(R)), (R2,B(R)⊗2), and so
on, such that Pn+1(B × R) = Pn(B) for any B ∈ B(R). Then there exists a unique probability measure P
on (RN,B(R)⊗N) such that

P ({ω ∈ RN : (ω1, . . . , ωn) ∈ B}) = Pn(B)

for any n ≥ 1 and any subset B ∈ B(R)⊗n.

Proof. It suffices to form the relevant consistent family and apply Theorem 3.46. Given an I-tuple (i1, . . . , in),
we define

P i1,...,in(Ai1 × · · · ×Ain) := Pi∗({ω ∈ Ri
∗

: (ωi1 , . . . , ωin) ∈ Ai1 × · · · ×Ain}),

where i∗ := max{i1, . . . , in} and Ai1 , . . . , Ain ∈ B(R). This family is permutation invariant; the projection
invariance follows as a result of the assumption Pn+1(B × R) = Pn(B).

Note that to specify a measure on (RN,B(R)⊗N), it is not sufficient to specify the one-dimensional distri-
butions for each component; there needs to be a specification of how the components interact. For example,
specifying the one-dimensional distributions and also specifying that the components are independent would
suffice.

Example 3.48 (Sequence of coin flips). There exists a unique probability measure P on (RN,B(R)⊗N) such
that

P ({ω ∈ RN : ω1 = j1, . . . , ωn = jn}) = 2−n

for any n ∈ N and any (j1, . . . , jn) ∈ {0, 1}n. Then the random variables ξn(ω) := ωn are independent
Bernoulli random variables. Note that identifying the ξn with coefficients of a dyadic expansion

∑∞
n=1 ξn2−n

shows that this models the uniform distribution on [0, 1].

13



4 The Lebesgue integral and expectation

4.1 The Lebesgue integral and convergence theorems

The Riemann integral is defined for functions with countably many points of discontinuity, but cannot
handle functions like 1Q∩[0,1].

Definition 4.1. A simple function on a measurable space (Ω,F) is of the form

f =

n∑
i=1

ai1Ai , (1)

for ai ∈ R, Ai ∈ F , and n ∈ N.

Note that the form (1) is not necessarily unique for a given function f .

Definition 4.2. Let (Ω,F , µ) be a measure space and let f : (Ω,F)→ (R,B(R)) be a measurable function.

1) If f =
∑n
i=1 ai1Ai with ai ∈ R+ (nonnegative), Ai ∈ F , and n ∈ N, then we define∫

f dµ :=

n∑
i=1

aiµ(Ai),

which will take a value in [0,∞]. [Note that this definition is independent of the choice of representation
(1) for f .]

2) If f is nonnegative, then we define ∫
f dµ := sup

g simple
0≤g≤f

∫
g dµ,

which will take a value in [0,∞].

3) For any other [measurable] f , we define f+ := f ∨ 0 and f− := (−f) ∨ 0. These two auxiliary functions
are measurable and nonnegative. If either

∫
f+ dµ <∞ or

∫
f− dµ <∞, then we define∫

f dµ :=

∫
f+ dµ−

∫
f− dµ,

which will take a value in [−∞,∞].

Definition 4.3.

• If
∫
f+ <∞ or

∫
f− <∞, then we say the integral of f exists.

• We say f is integrable if any of the following equivalent conditions hold.

◦
∫
f+ <∞ and

∫
f− <∞

◦
∫
|f | <∞

• If A ∈ F , we define
∫
A
f dµ :=

∫
1Af dµ.

Proposition 4.4. If the integrals of f and g exist, then the following hold.

• µ(f 6= g) = 0 =⇒
∫
f dµ =

∫
g dµ.

• µ(f < g) = 0 =⇒
∫
f dµ ≥

∫
g dµ.

•
∫
|f | dµ = 0 =⇒ µ(f 6= 0) = 0.

Proposition 4.5. Let f and g be simple integrable functions. Then
∫
f + g =

∫
f +

∫
g.
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Lemma 4.6. Let f be a measurable nonnegative function. Then there exists a sequence of nonnegative
simple measurable functions fn that are pointwise increasing to f .

Proof. Let

fn := n1{f≥n} +

n2n−1∑
i=1

i

2n
1{ i

2n≤f<
i+1
2n }

.

Lemma 4.7. Let g be a simple function and f a measurable function such that 0 ≤ g ≤ f . If (gn)n≥1 is a
sequence of simple nonnegative functions increasing pointwise to f , then

lim
n→∞

∫
gn dµ ≥

∫
g dµ .

Proof. Let x1, . . . , xm ∈ R+ \ {0} be the values g takes, excluding zero. Then g =
∑m
i=1 xi1{g=xi}.

Case 1. Suppose µ(g = xi) = ∞ for some i. Let An := {g = xi} ∩ {gn ≥ xi/2}. Then the An form an
increasing sequence of sets whose union is {g = xi}. By the σ-additivity of µ, applying Theorem 3.7
shows that µ(An)→ µ(g = xi) =∞ as n→∞. Then,∫

gn dµ ≥
xi
2
µ(An)→∞

as n→∞, proving the lemma.

Case 2. Otherwise, µ(g = xi) < ∞ for all i = 1, . . . ,m. For a fixed i, choose ε such that 0 < ε < xi. Let
An := {g = xi}∩{gn ≥ xi− ε}; again, this is an increasing sequence of sets whose union is {g = xi}.
By σ-additivity, we have µ(An)↗ µ(g = xi) as n→∞. Then,∫

{g=xi}
gn dµ ≥ (xi − ε)µ(An)↗ (xi − ε)µ(g = xi)

as n→∞. Summing this result over i = 1, . . . ,m gives

lim
n→∞

∫
gn dµ ≥

∫
g dµ .

Theorem 4.8 (Poor man’s Beppo Levi’s Monotone Convergence Theorem). Let f ≥ 0 be measurable and
let (fn)n≥1 be a sequence of nonnegative simple functions that increases to f . Then

lim
n→∞

∫
fn dµ =

∫
f dµ .

Proof. One direction is clear by the definition of the integral for nonnegative functions.∫
fn dµ ≤ sup

g simple
0≤g≤f

∫
g dµ =

∫
f dµ .

We consider the other direction.

Case 1.
∫
f dµ < ∞. For any ε > 0, there exists a simple function h such that 0 ≤ h ≤ f and

∫
h dµ ≥∫

f dµ−ε. By the previous lemma, limn→∞
∫
fn dµ ≥

∫
h dµ, so limn→∞

∫
fn dµ ≥

∫
f dµ.

Case 2.
∫
f dµ = ∞. For any k ∈ N, there exists a simple function h such that 0 ≤ h ≤ f and

∫
h dµ ≥ k.

Again, using the previous lemma, limn→∞
∫
fn dµ ≥

∫
h dµ ≥ k, so limn→∞

∫
fn dµ =∞.
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Lemma 4.9. Let f, g ≥ 0 be measurable. Then
∫
f + g dµ =

∫
f dµ+

∫
g dµ.

Proof. Let (fn)n≥1 and (gn)n≥1 be increasing sequences of nonnegative simple functions that increase to f
and g respectively. Then fn + gn ↗ f + g. Thus,∫

f + g dµ = lim
n→∞

∫
fn + gn dµ = lim

n→∞
fn dµ+ lim

n→∞

∫
gn dµ =

∫
f dµ+

∫
g dµ .

Lemma 4.10. Let f be integrable and let g be measurable and such that either
∫
g+ dµ <∞ or

∫
g− dµ <∞

holds. Then ∫
f + g dµ =

∫
f dµ+

∫
g dµ .

Proof. Assume without loss of generality that
∫
g− dµ <∞. Then∫

(f + g)− dµ ≤
∫
f− + g− dµ =

∫
f− dµ+

∫
g− dµ <∞.

Then noting that
(f + g)+ − (f + g)− = f + g = f+ − f− + g+ − g−

gives ∫
(f + g)+ dµ+

∫
f− dµ+

∫
g− dµ =

∫
(f + g)+ + f− + g− dµ

=

∫
(f + g)− + f+ + g+ dµ

and finally, using the fact that
∫

(f + g)− dµ,
∫
f−, and

∫
g− are finite, we may rearrange the above equality

to get ∫
(f + g)+ dµ−

∫
(f + g)− dµ =

∫
f+ dµ−

∫
f− dµ+

∫
g+ dµ−

∫
g− dµ∫

f + g dµ =

∫
f +

∫
g.

Theorem 4.11 (Beppo Levi’s Monotone Convergence Theorem). Let g, f, (fn)n≥1 be measurable functions
such that

∫
|g| dµ <∞, g ≤ fn almost everywhere for each n, and fn ↗ f almost everywhere. Then

lim
n→∞

∫
fn dµ =

∫
f dµ .

Proof. We first assume g = 0, and handle the general case later. By assumption, there exists N ∈ F with
µ(N) = 0 such that f̃n ↗ f̃ , where f̃n := 1Ncfn and f̃ := 1Ncf . Note that f̃1 ≥ 0. Then we have hn ↗ f̃ ,
where

hn := n1{f̃n≥n} +

n2n−1∑
i=1

i

2n
1{ i

2n≤f̃n<
i+1
2n }

.

By the previous theorem, limn→∞
∫
hn dµ =

∫
f̃ dµ. Since hn ≤ f̃n for each n, we have

lim
n→∞

∫
fn dµ = lim

n→∞

∫
f̃n dµ =

∫
f̃ dµ =

∫
f dµ,

and we are finished for this case.
For general g, we can apply the above result for fn − g ↗ f − g to get limn→∞

∫
fn − g dµ =

∫
f − g dµ.

Adding both sides by
∫
g dµ (which is justified because

∫
|g| dµ <∞ by assumption) gives the result.
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Lemma 4.12. If f is integrable, then for each ε > 0 there exists δ > 0 such that∫
A

|f | dµ < ε

for any measurable set A satisfying P (A) < δ.

Proof. By the monotone convergence theorem (Theorem 4.11),

lim
k→∞

∫
{|f |≤k}

|f | dµ =

∫
|f | dµ,

so there exists a large K such that ∫
|f | dµ−

∫
{|f |≤K}

|f | dµ < ε/2.

Then for measurable set A satisfying P (A) < δ := ε/(2K), we have∫
A

|f | dµ =

(∫
A

|f | dµ−
∫
A∩{|f |≥K}

|f | dµ

)
+

∫
A∩{|f |≥K}

|f | dµ

< ε/2 +K · P (A)

< ε.

We now consider sequences of functions that are not necessarily monotone. In general, we cannot push
the limit under the integral. Consider fn := n1(0,1/n]. The functions converge to f := 0, but

lim
n→∞

∫
fn dµ = 1 6= 0 =

∫
f dµ .

However, the following result does hold.

Theorem 4.13 (Fatou’s Lemma). Let g and (fn)n≥1 be measurable functions such that
∫
|g| dµ < ∞ and

g ≤ fn almost everywhere. Then ∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ .

Proof. Let hn := infm≥n fm. Then hn ↗ lim infn→∞ fn and hn ≥ g almost everywhere for all n. Thus,∫
lim inf
n→∞

fn dµ =

∫
lim
n→∞

hn dµ

= lim
n→∞

∫
hn dµ monotone convergence theorem

≤ lim
n→∞

inf
m≥n

∫
fm dµ

= lim inf
n→∞

∫
fn dµ .

Corollary 4.14. If g and (fn)n≥1 are measurable functions such that
∫
|g| dµ and g ≥ fn almost everywhere

for all n, then ∫
lim sup
n→∞

fn dµ ≥ lim sup
n→∞

∫
fn dµ .
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Theorem 4.15 (Lebesgue’s Dominated Convergence Theorem). Let g, f , and (fn)n≥1 be measurable func-
tions such that

∫
|g| dµ < ∞, |fn| ≤ |g| almost everywhere for each n, and fn → f almost everywhere.

Then

1) ∫
|f | dµ ≤

∫
|g| dµ <∞.

2)

lim
n→∞

∫
fn dµ =

∫
f dµ .

3)

lim
n→∞

∫
|fn − f | dµ = 0.

Proof. Since |fn| ≤ |g| almost everywhere and fn → f almost everywhere, we have |f | ≤ |g| almost every-
where. Thus

∫
|f | dµ ≤

∫
|g| dµ <∞.

For the second result, note that∫
f dµ ≤ lim inf

n→∞

∫
fn dµ Fatou’s lemma

≤ lim sup
n→∞

∫
fn dµ

≤
∫

lim sup
n→∞

fn dµ Fatou’s lemma (corollary, use −g)

=

∫
f dµ,

so all inequalities above are equalities.
Finally, for the final result, note that |fn−f | ≤ 2|g| and limn→∞|fn−f | = 0 almost everywhere. Applying

the second result produces the third result.

Theorem 4.16 (Fubini’s theorem and Tonelli’s theorem). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measure
spaces and let f : (Ω1 × Ω2,F1 ⊗F2)→ (R,B(R)) be measurable.

a) Fubini’s theorem. If ∫
Ω1×Ω2

|f | d(µ1 ⊗ µ2) <∞,

then∫
Ω1×Ω2

f d(µ1 ⊗ µ2) =

∫
Ω1

∫
Ω2

f(ω1, ω2) dµ2(ω2) dµ1(ω1) =

∫
Ω2

∫
Ω1

f(ω1, ω2) dµ1(ω1) dµ2(ω2) ∈ R.

b) Tonelli’s theorem. If f ≥ 0 and µ1 and µ2 are both σ-finite, then∫
Ω1×Ω2

f d(µ1 ⊗ µ2) =

∫
Ω1

∫
Ω2

f(ω1, ω2) dµ2(ω2) dµ1(ω1) =

∫
Ω2

∫
Ω1

f(ω1, ω2) dµ1(ω1) dµ2(ω2) ∈ [0,∞].

Definition 4.17. Let (Ω,F , µ) be a measure space. We define

L0 := {measurable f : (Ω,F)→ (R,B(R))}.

Let ∼ be the equivalence relation on L0 given by f ∼ g whenever f = g almost everywhere. Then we define

L0 := L0/ ∼ .
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For f ∈ L0 and p ∈ [1,∞), we define the p-norm

‖f‖p :=

(∫
‖f‖p dµ

)1/p

,

along with the function spaces

Lp := {f ∈ L0 : ‖f‖p <∞}
Lp := Lp/ ∼

The p-norm is a norm on Lp, i.e., it satisfies

1) ‖cf‖ = |c|‖f‖ for c ∈ R, f ∈ Lp,

2) ‖f + g‖ ≤ ‖f‖+ ‖g‖ for f, g ∈ Lp, and

3) ‖f‖ = 0 implies that f = 0 [note that 0 ∈ Lp is the equivalence class of all functions that are zero almost
everywhere].

For f ∈ L0, we also define
‖f‖∞ := inf{λ ∈ R+ : µ(|f | ≥ λ) = 0},

with the additional convention that inf ∅ :=∞. We define

L∞ := {f ∈ L0 : ‖f‖∞ <∞}
L∞ := L∞/ ∼

Proposition 4.18. If µ(Ω) <∞, then Lq ⊂ Lp for q ≥ p.

Proof. Let f ∈ Lq. If A := {f ≤ 1}, we easily see that
∫
A
|f |p dµ ≤ µ(Ω) < ∞, so integrability of |f |p is

determined by its behavior on Ac. However, on Ac, we have |f |p ≤ |f |q, so
∫
Ac
|f |p dµ ≤

∫
Ac
|f |q dµ <∞.

Theorem 4.19 (Hölder’s inequality). For 1 ≤ p, q ≤ ∞ such that 1/p+ 1/q = 1, we have

‖fg‖1 :=

∫
|fg| dµ ≤ ‖f‖p‖g‖q.

Note that Hölder’s inequality gives a precise bound for Proposition 4.18.

Corollary 4.20. If µ(Ω) <∞ and 1 ≤ p < q ≤ ∞, then

‖f‖p ≤ µ(Ω)
1
p−

1
q ‖f‖q.

Proof. Let r be such that 1
p = 1

q + 1
r . Then 1

q/p + 1
r/p = 1, so applying Hölder’s inequality (Theorem 4.19)

to fp and the constant function 1 gives

‖fp‖1 ≤ ‖fp‖q/p‖1‖r/p = ‖f‖pq · µ(Ω)p/r.

Taking the pth root of both sides proves the result.

Theorem 4.21 (Minkowski inequality). For 1 ≤ p ≤ ∞,

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 4.22. For every measure space (Ω,F , µ) and p ∈ [1,∞], Lp is a Banach space and L2 is a Hilbert
space with 〈f, g〉 :=

∫
fg dµ.
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4.2 Probability measures and modes of convergence

Proposition 4.23. Let (Ω,F , µ) be a measure space, (E, E) a measurable space, and f : (Ω,F)→ (E, E) a
measurable function. Then the pushforward measure

µf (B) := µ(f−1(B))

is a measure on (E, E) such that ∫
Ω

g ◦ f dµ . =

∫
E

g dµf

holds for any measurable g : (E, E)→ (R,B(R)), provided the integral exists.
If µ is a probability measure, then so is µf , and it is called the distribution of f , sometimes denoted

µf = µ ◦ f−1.

Definition 4.24. Let X be a random variable on a probability space (Ω,F , P ). We define the following.

E[X] :=

∫
X dP for X ∈ L1

Var(X) := E[(X − E[X])2] = E[X2]− E[X]2 for X ∈ L2

Cov(X,Y ) := E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X] E[Y ] for X ∈ L2 ⊂ L1

Example 4.25. Let (Ω,F , P ) be a probability space with X ∈ L1. The distribution P ◦X−1 is uniquely
given by the cdf FX(x) := P (X ≤ x) for x ∈ R.

X has the same distribution as the identity function on (R,B(R), P ◦X−1). In particular,

E[X] =

∫
R
x d(P ◦X−1) .

We can also use the Stieltjes integral to write the expectation as the sum of two Riemann integrals.

E[X] =

∫
R
x dFX(x)

=

∫ 0

−∞
x dFX(x)−

∫ ∞
0

x dGX(x) GX(x) := 1− FX(x)

= −
∫ 0

−∞
FX(x) dx+

∫ ∞
0

GX(x) dx integration by parts, see homework

=

∫ 0

−∞
(P (X > x)− 1) dx+

∫ ∞
0

P (X > x) dx .

We define the right-quantile function qX : (0, 1)→ R by

qX(u) := sup{x ∈ R : FX(x) ≤ u}.

This is in some sense the “inverse” of FX ; it may be incorrect on a set of measure at most zero. It is a
random variable on ((0, 1),B((0, 1)), λ), where λ is the Lebesgue measure. We have

λ(qX ≤ x) = λ({u ∈ (0, 1) : FX(qX(u)) ≤ FX(u)}) = λ(u ≤ FX(u)

which implies qX
d
= X. Moreover,

E[X] =

∫ 1

0

qX(u) du .

Definition 4.26. Let (ω,F , P ) be a probability space and I a nonempty set.
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1) A family of events {Ai}i∈I is independent if

P

(
M⋂
m=1

Aim

)
=

M∏
m=1

P (Aim)

for every finite subset {i1, . . . , iM} ⊂ I.

2) A family of σ-algebras {Fi}i∈I is independent if the family of events {Ai}i∈I is independent for any
Ai ∈ Fi, i ∈ I.

3) A family of random variables {Xi}i∈I is independent if the family of σ-algebras {σ(Xi)}i∈I is independent.

Proposition 4.27. Let X1, . . . , XM be random variables on a probability space (Ω,F , P ). The following are
equivalent.

1) X1, . . . , XM are independent.

2)

E

[
M∏
m=1

fm(Xm)

]
=

M∏
m=1

E[fm(Xm)]

for all bounded Borel functions f1, . . . , fM .

3)

E[exp(iuTX)] =

M∏
m=1

E[exp(iumXm)]

for any u ∈ RM .

Corollary 4.28. If X,Y ∈ L2 are independent, then

E[XY ] = E[X] E[Y ],

i.e., Cov(X,Y ) = 0.

Proof. Take trunctations of the ranges of X and Y by [−N,N ], then take N →∞ and apply the dominated
convergence theorem (Theorem 4.15).

Theorem 4.29 (Borel-Cantelli Lemma). Let A1, A2, . . . be a sequence of events in a probability space
(Ω,F , P ).

a) If
∑∞
n=1 P (An) <∞, then

P

 ⋂
m≥1

⋃
n≥m

An

 = 0.

b) If all the events are independent and
∑∞
n=1 P (An) =∞, then

P

 ⋂
m≥1

⋃
n≥m

An

 = 1.

Proof.

a)

P

 ⋂
m≥1

⋃
n≥m

An

 = lim
m→∞

P

 ⋃
n≥m

An

 ≤ lim
m→∞

∑
n≥m

P (An) = 0.
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b)

logP

(
M⋂
n=m

Acn

)
= log

M∏
n=m

P (Acn) complements are independent

=

M∑
n=m

logP (Acn)

≤
M∑
n=m

(P (Acn)− 1) log(x) ≤ x− 1

= −
M∑
n=m

P (An)
M→∞−→ −∞,

implying P
(⋂

n≥mA
c
n

)
= 0, and thus P

(⋃
n≥mAn

)
= 1. Finally,

P

 ⋂
m≥1

⋃
n≥m

An

 = lim
m→∞

P

 ⋃
n≥m

An

 = 1.

Definition 4.30. Let X,X1, X2, . . . be random variables on a probability space (Ω,F , P ). There exist the
following concepts of convergence.

(i) (Xn)n≥1 is said to converge to X almost surely if there exists a set N ∈ F with P [N ] = 0 such that

lim
n→∞

Xn(ω) = X(ω) for all ω ∈ Ω \N.

We denote this by Xn → X a.s.

(ii) For p ∈ [1,∞], (Xn)n≥1 is said to converge to X in Lp if

lim
n→∞

‖X −Xn‖p = 0.

We denote this by Xn → X in Lp or by Xn
Lp−→ X.

(iii) (Xn)n≥1 is said to converge to X in probability if for all ε > 0,

lim
n→∞

P [|Xn −X| ≥ ε] = 0.

We denote this by Xn → X in probability or by Xn
P−→ X.

(iv) (Xn)n≥1 is said to converge to X in distribution if

lim
n→∞

E[f(Xn)] = E[f(X)]

for every bounded continuous function f : R → R. We denote this by Xn → X in distribution or by

Xn
d−→ X. (Note that this notion of convergence also makes sense if the random variables X,X1, X2, . . .

are all defined on different probability spaces.)

Proposition 4.31. The following implications hold.

a) (i) =⇒ (iii)

b) (ii) =⇒ (iii)
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c) (iii) =⇒ (iv)

d) It follows from (iii) that there exists a subsequence (Xnk)k≥1 that converges to X a.s.

e) If the (Xn)n≥1 are dominated by an Lp function, then (i) =⇒ (ii).

Lemma 4.32. If F is a cdf, then there are at most countably many x ∈ R at which F is not continuous.

Proposition 4.33. A sequence of random variables (Xn)n≥1 with respective cdfs (Fn)n≥1 converges in
distribution to a random variable X with cdf F if and only if Fn(x)→ F (x) whenever F is continuous at x.

4.3 Uniform integrability

Definition 4.34. A family of random variables (Xi)i∈I on a common probability space (Ω,F , P ) is uni-
formly integrable if

lim
c→∞

sup
i∈I

∫
{|Xi|>c}

|Xi| dP = 0.

Lemma 4.35.

1) If (Xi)i∈I is a family of random variables on a common probability space (Ω,F , P ) such that |Xi| ≤ |X|
for all i ∈ I, where X ∈ L1(Ω,F , P ), then the family is uniformly integrable.

2) If we have finitely many random variables X1, . . . , Xn ∈ L1(Ω,F , P ), then they are uniformly integrable.

Proof. For the first statement,

lim
c→∞

∫
{|Xi|>c}

|Xi| dP ≤ lim
c→∞

E[1{|X|>c}|X|] = 0,

where the last equality follows from the dominated convergence theorem (Theorem 4.15) because

1{|X|>c}|X| → 0

almost surely as c→∞.
For the second statement, note that |Xi| ≤ |X1|+ · · ·+ |Xn| for each i ∈ {1, . . . , n} and apply the previous

statement.

Proposition 4.36. A family of random variables (Xi)i∈I on a common probability space (Ω,F , P ) is uni-
formly integrable if and only if both of the following statements hold.

a) The family is bounded in L1, that is,
sup
i∈I

E[|Xi|] <∞.

b) For each ε > 0, there exists a δ > 0 such that∫
A

|Xi| dP ≤ ε

for all i ∈ I and A ∈ F such that P (A) ≤ δ.

Proof. We first observe that for A ∈ F , we have∫
A

|Xi| dP =

∫
A∩{|Xi|≤c}

|Xi| dP +

∫
A∩{|Xi|<c}

|Xi| dP ≤ c · P (A) +

∫
A∩{|Xi|>c}

|Xi| dP .

So, if the family is uniformly integrable, there exists c ≥ 0 such that
∫
{|Xi|>c}|Xi| dP ≤ 1 for all i ∈ I.

Then the above statement with A = Ω gives E[|Xi|] ≤ c · P (Ω) + 1 = c+ 1 for all i ∈ I, proving a).
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Fix ε > 0. If the family is uniformly integrable, there exists c ≥ 0 such that
∫
{|Xi|>c}|Xi| dP ≤ ε/2 for

all i ∈ I. Let δ = ε/(2c). If P (A) ≤ δ, then by our work above we have∫
A

|Xi| dP ≤ c · P (A) +

∫
{|Xi|>c}

|Xi| dP ≤ ε,

proving b).
We now show the converse; suppose a) and b) hold, and let K := supi∈I E[|Xi|] <∞. Then

c · P (|Xi| > c) ≤
∫
{|Xi|>c}

|Xi| dP ≤ K

for all i ∈ I. Given ε > 0, choose δ such that b) holds, and let c := K/δ. We just showed that P (|Xi| > c) ≤
K/c = δ for all i ∈ I. By b),

∫
{|Xi|>c}|Xi| dP ≤ ε for all i ∈ I, proving uniform integrability.

Lemma 4.37. If (Xi)i∈I and (Yi)i∈I are two uniformly integrable families of random variables on a common
probability space, indexed by the same index set, then (Xi + Yi)i∈I is also uniformly integrable.

Proof. We use Proposition 4.36. Since a) holds for each family, we have

sup
i∈I

E[|Xi + Yi|] ≤ sup
i∈I

E[|Xi|] + sup
i∈I

E[|Yi|] <∞.

Fix ε > 0. Since b) holds for each family, there exists δ > 0 such that
∫
A
|Xi| dP ≤ ε/2 and

∫
A
|Yi| dP ≤ ε/2

for all i ∈ I and any A ∈ F such that P (A) ≤ δ. Then∫
A

|Xi + Yi| dP ≤
∫
A

|Xi| dP +

∫
A

|Yi| dP ≤ ε.

Thus, (Xi + Yi)i∈I is uniformly integrable.

Theorem 4.38. Let X and (Xn)n≥1 be random variables on a common probability space (Ω,F , P ) such that
Xn → X almost surely and such that (Xn)n≥1 is uniformly integrable. Then

1. X ∈ L1,

2. E[Xn]→ E[X], and

3. E[|Xn −X|]→ 0 (i.e., L1-convergence).

Proof. By Proposition 4.31, there exists a subsequence (Xnk)k≥1 such that Xnk → X almost surely. By
Fatou’s lemma (Theorem 4.13) and uniform integrability, we have

E[|X|] ≤ lim inf
k→∞

E[|Xnk |] <∞,

which shows that X ∈ L1.
By the previous lemma, the family (Xn −X)n≥1 is uniformly integrable. Given ε > 0, choose c ≥ 0 such

that ∫
{|Xn−X|>c}

|Xn −X| dP ≤ ε/3,

and choose n0 such that
P (|Xn −X| > ε/3) ≤ ε/(3c)

for all n ≥ n0. Then,

E[|Xn −X|] =

∫
{|Xn−X|≤ε/3}

|Xn −X| dP +

∫
{ε/3<|Xn−X|≤c}

|Xn −X| dP +

∫
{|Xn−X|>c}

|Xn −X| dP

≤ ε/3 + c · P (|Xn −X| > ε/3) + ε/3

≤ ε,

showing that E[|Xn −X|]→ 0.
To show the remaining claim, note that both E[(Xn −X)+] and E[(Xn −X)−] are bounded by E[|Xn −

X|]→ 0 for all n, so E[Xn −X]→ 0, i.e., E[Xn]→ E[X].
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Theorem 4.39 (de la Vallée-Poussin). A family of random variables (Xi)i∈I on a common probability space
(Ω,F , P ) is uniformly integrable if and only if there exists a function ϕ : R+ → R+ such that

lim
x→∞

ϕ(x)

x
=∞

and such that
sup
i∈I

E[ϕ(|Xi|)] <∞.

Further, if the family is uniformly integrable, this ϕ can be chosen to be convex and nondecreasing.

Proof. Suppose there exists such a ϕ for a family. Fix ε > 0 and let K := supi∈I E[ϕ(|Xi|)]. There exists a
c ≥ 0 such that ϕ(x)/x ≥ K/ε for all x ≥ c. Then,∫

{|Xi|>c}
|Xi| dP ≤

∫
{|Xi|>c}

ϕ(|Xi|) · ε
K

dP ≤ ε.

Thus, the family is uniformly integrable.
We now show the converse. Suppose the family is uniformly integrable. Then there exists a strictly

increasing sequence (cn)n≥1 such that c1 ≥ 1 and such that∫
{|Xi|>cn}

|Xi| dP ≤
1

2n

for all i ∈ I.
We define

f :=
∑
n≥1

n1(cn,cn+1] =
∑
n≥1

1(cn,∞),

and

ϕ(x) :=

∫ x

0

f(y) dy .

This is a piecewise-linear convex function with increasing slope. Also, ϕ(x)/x→∞ as x→∞.
We have

E[ϕ(|Xi|)] = E

[∫ ∞
0

1{|Xi|>y}f(y) dy

]
=

∫ ∞
0

f(y)P (|Xi| > y) dy Tonelli (Theorem 4.16)

=
∑
n≥1

∫ ∞
cn

P (|Xi| > y) dy MCT (Theorem 4.11)

≤
∑
n≥1

1

2n
see below

= 1.

To bound the integral above, note the following.

1

2n
≥
∫
{|Xi|>cn}

|Xi| dP

=

∫
Ω

∫ ∞
0

1{|Xi|>y}∩{|Xi|>cn} dy dP

=

∫ ∞
0

P (|Xi| > max{y, cn}) dy Tonelli (Theorem 4.16)

= cn · P (|Xi| > c) +

∫ ∞
cn

P (|Xi| > y) dy

≥
∫ ∞
cn

P (|Xi| > y) dy .
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Corollary 4.40. A family of random variables (Xi)i∈I on a common probability space is uniformly integrable
if

sup
i∈I
‖Xi‖p <∞

for some p ∈ (1,∞].

Proof. Noting that ‖Xi‖p = E[|Xi|p]1/p, we see that the assumption implies that supi∈I E[|Xi|p] < ∞.
Applying the previous theorem with ϕ(x) := xp finishes the proof.

4.4 Jensen’s inequality

Definition 4.41. A function ϕ : R→ R is convex if

ϕ(λx+ (1− λ)y) ≤ λϕ(x) + (1− λ)ϕ(y)

holds for any x, y ∈ R and 0 ≤ λ ≤ 1.

Proposition 4.42. Convex functions are continuous, and their one-sided derivatives

lim
ε↘0

ϕ(x+ ε)− ϕ(x)

ε
, lim

ε↘0

ϕ(x)− ϕ(x− ε)
ε

exist for all x ∈ R.

Theorem 4.43 (Jensen’s inequality). Let X be a random variable, let ϕ : R→ R be a convex function, and
let X,ϕ(X) ∈ L1. Then

E[ϕ(X)] ≥ ϕ(E[X]).

Proof. Let a := E[X] and

b := lim
ε↘0

ϕ(a+ ε)− ϕ(a)

ε
.

Then for all x ∈ R we have

b ≤ ϕ(x)− ϕ(a)

x− a
.

Thus,

ϕ(X) ≥ ϕ(a) + b · (X − a)

E[ϕ(X)] ≥ ϕ(a) + b · (E[X]− a) = ϕ(E[X]).

Corollary 4.44. Let X be a random variable on a probability space (Ω,F , P ). Then

‖X‖p ≤ ‖X‖q

for 1 ≤ p ≤ q ≤ ∞.

Proof. If q =∞, then
E[|X|p]1/p ≤ E[‖X‖p∞]1/p ≤ ‖X‖∞.

If q <∞, then noting that x 7→ xq/p is a convex function, we have the following from Jensen’s inequality.

‖X‖q = E[|X|q]1/q = E[|X|p·q/p]1/q ≥ E[|X|p]1/p.
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4.5 Weak law of large numbers

Lemma 4.45. If X1, . . . , Xn are random variables, then

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj).

Proof.

Var

(
n∑
i=1

Xi

)
= E

( n∑
i=1

Xi − EXi

)2


= E

 n∑
i=1

(Xi − EXi)
2 +

∑
i 6=j

(Xi − EXi)(Xj − EXj)


=

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj).

Theorem 4.46 (Weak law of large numbers). Let X1, X2, . . . be uncorrelated (zero pairwise covariance)
random variables in L2 such that E[Xn] = m for all n and such that supn E[X2

n] <∞. Then

1

n

n∑
i=1

Xi → m

in L2 (and thus, in probability as well).

Proof. Let k := supn E[X2
n] <∞. Then

E

( 1

n

n∑
i=1

Xi −m

)2
 = Var

(
1

n

n∑
i=1

Xi

)

=
1

n2
Var

(
n∑
i=1

Xi

)

=
1

n2

n∑
i=1

Var(Xi) the Xi are uncorrelated

=
1

n2

n∑
i=1

(
E[X2

i ]−m2
)

≤ k −m2

n
→ 0

as n → ∞, showing L2 convergence. Proposition 4.31 shows why convergence in L2 implies convergence in
probability.

4.6 Types of distributions

Definition 4.47. Let Ω be a nonempty set. Given ω ∈ Ω, the Dirac measure is the map δω : 2Ω → {0, 1}
defined by

δω(A) =

{
1 ω ∈ A,
0 ω /∈ A.
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Definition 4.48. Let µ be a measure on Rd.
• We call µ discrete if µ =

∑
n≥1 pnδxn for x1, x2,∈ Rd and p1, p2, . . . ≥ 0.

• We call µ continuous if µ((a1, b1]× · · · × (ad, bd]) is continuous in b ∈ Rd.

• We call µ absolutely continuous if there exists a Borel function2 f : Rd → R+ such that

µ((a1, b1]× · · · × (ad, bd]) =

∫ b1

a1

· · ·
∫ bd

ad

f(y1, . . . , yd) dy1 · · · dyd .

This f is called the density of µ. Moreover,

µ(A) =

∫
A

f(x) dx

for any A ∈ B(R)⊗d and ∫
Rd
g(x) dµ(x) =

∫
Rd
g(x)f(x) dx

for any measurable function g : Rd → R.

Note that if f1, . . . , fd are densities on R, then f(x) := f1(x1)f2(x2) · · · fd(xd) is a density on Rd, and
the corresponding measure is µ = µ1 ⊗ · · · ⊗ µd.
Definition 4.49. A random vector on a probability space (Ω,F , P ) is a vector X := (X1, . . . , Xd) where
X1, . . . , Xd are random variables. It is a measurable mapping X : (Ω,F)→ (Rd,B(R)⊗d).

• We call X discrete if the pushforward measure P ◦X−1 is discrete.

• We call X continuous if the pushforward measure P ◦X−1 is continuous.

• We call X absolutely continuous if the pushforward measure P ◦X−1 is absolutely continuous.

Example 4.50. We list some examples of discrete distributions on R.

1. Discrete uniform. µ(n) := 1/N , for n = 1, . . . , N .

2. Bernoulli. µ(0) := 1− p, µ(1) := p, with p ∈ [0, 1].

3. Binomial. µ(n) =
(
N
n

)
pn(1− p)N−n, for n = 0, . . . , N .

4. Poisson. µ(n) := e−λ λ
n

n! , for n = 0, 1, . . ., where λ > 0.

5. Geometric. With 0 < p ≤ 1,

• µ(n) := p(1− p)n−1, for n = 1, 2, . . .,

• µ(n) := p(1− p)n, for n = 0, 1, . . ..

Example 4.51. We list some examples of densities on R.

1. Gaussian. f(x) := 1√
2πσ2

e−(x−µ)2/(2σ2), for all x ∈ R, with µ ∈ R and σ > 0.

2. Uniform. f(x) := 1/(b− a) for a ≤ x ≤ b.

3. Exponential. f(x) := λe−λx for x ≥ 0, with λ > 0. An important property of this distribution is
memorylessness, which we will explore later.

4. Bilateral exponential. f(x) := 1
2λe
−λ|x| for x ∈ R, with λ > 0. [One can also consider using a two

different values of λ for the positive reals and the negative reals.]

5. Cauchy. f(x) := θ/(π(x2 + θ2)) for x ∈ R, with θ > 0. A Cauchy random variable has no moments
due to its heavy tails.

If X,Y ∼ N (0, 1) are independent, then X + Y
d
=
√

2X. If X,Y ∼ Cauchy(0) are independent, then

X + Y
d
= 2X.

2A Borel function is measurable with respect to the Borel σ-algebras on both its domain and its range.
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4.7 The characteristic function

Definition 4.52. Let X be a d-dimensional random variable with cdf F (x1, . . . , xd) := P (X1 ≤ x1, . . . , Xd ≤
xd). The characteristic function ϕX : Rd → C is defined by

u 7→ E[exp(iutX)],

where utX := u1X1 + · · ·+ udXd.
If F has density f , then

ϕX(u) =

∫
Rd

exp(iutx)f(x) dx .

Definition 4.53. If Z = V + iW for V,W ∈ L1, then we define E[Z] = E[V ] + iE[W ]. In particular,

E[eiu
TX ] = E[cos(uTX)] + iE[sin(uTX)].

Additionally, E[|Z|] = E[
√
V 2 +W 2] ≤ E[|V |+ |W |] <∞.

Lemma 4.54. If Z = V + iW for V,W ∈ L1, then |E[Z]| ≤ E[|Z|].

Proof.

|E[Z]| = sup
q∈Q

Re(eiq E[Z])

= sup
q∈Q

E[Re(eiqZ)]

≤ E

[
sup
q∈Q

Re(eiqZ)

]
= E[|Z|].

Lemma 4.55. Let X be a d-dimensional random variable.

1) |ϕX(u)| ≤ 1.

2) ϕX(−u) = ϕX(u) = ϕ−X(u).

3) If ϕX is real-valued, then X
d
= −X.

4) u 7→ ϕX(u) is uniformly continuous in Rd.

Proof. For 1), note that
|ϕX(u)| ≤ E[|exp(iutX)|] ≤ 1.

For 2), note that
ϕ−X(u) = ϕX(−u) = E[exp(iutX)] = ϕX(u).

For 3), if ϕX is real valued, then 2) shows that ϕX(u) = ϕ−X(u).
For 4),

|ϕX(hu)− ϕX(u)| ≤ E[|exp(i(h+ u)tX)− exp(iutX)|] ≤ E[|exp(ihtX)− 1|]→ 0

as h→ 0.

Lemma 4.56. Let Y be a random variable on a probability space (Ω,F , P ) with Y ≥ 0 a.s. and E[Y ] = 1.
Then Q : F → R+ defined by

Q(A) := E[1AY ]

is a probability measure on (Ω,F). Moreover, if X is a random variable on (Ω,F), then

EQ[X] = E[XY ].
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Proof. We know Q maps into R+ because Y ≥ 0 almost surely. Clearly we have Q(Ω) = E[Y ] = 1 and
Q(∅) = E[0] = 0. Countable additivity holds readily.

Q

⋃
n≥1

An

 = E

∑
n≥1

1AnY

 =
∑
n≥1

E[1AnY ] =
∑
n≥1

Q(An).

We omit the proof of the change of measure formula. It is clear when X is a simple function; for general
X, approximate it by simple functions.

Theorem 4.57. Let X be a real-valued random variable on a probability space (Ω,F , P ).

1) If E[|X|n] <∞ for some n ∈ N, then we have the following.

• ϕ(k)
X (u) exists for all k ≤ n.

• ϕ(k)
X (u) = E[(iX)k exp(iuX)].

• E[Xk] = (−i)kϕ(k)
X (0).

• ϕX(u) =
∑n
k=0

(iu)k

k! E[Xk] + (iu)n

n! εn(u) with limu→0 εn(u) = 0.

2) If ϕ
(2k)
X (0) exists then E[X2k] <∞.

Proof of 1). The third and fourth bullets follow directly from the first and second.
Consider the case n = 1. We first note that

lim
h→0

exp(ihX)− 1

h
=

d

dh
exp(ihX)

∣∣∣∣
h=0

= iX.

Also, from the bound |exp(iθ)− 1| ≤ |θ| we have∣∣∣∣exp(ihX)− 1

h

∣∣∣∣ ≤ |X|.
We have |X| ∈ L1 by assumption. Thus we may use the dominated convergence theorem (Theorem 4.15) to
prove the case n = 1.

ϕ′X(u) = lim
h→0

ϕX(u+ h)− ϕX(u)

h
= lim
h→0

E

[
exp(iuX)

exp(ihX)− 1

h

]
= E[iX exp(iuX)].

We prove the result for general n by induction. Note that E[|X|n+1] < ∞ implies E[|X|k] < ∞ for all

k ≤ n + 1 (Proposition 4.18 or Theorem 4.19), so by induction ϕ
(k)
X (u) exists for all k ≤ n. Then, by the

same argument,

ϕ
(n+1)
X (u) = lim

h→0
E

[
(iX)n exp(iuX)

exp(ihX)− 1

h

]
= E[(iX)n+1 exp(iuX)].

Proof of 2). Consider the case k = 1.

30



ϕ′′X(0) = lim
h→0

1

2

(
ϕ(2h)− ϕ(0)

2h
+
ϕ(0)− ϕ(−2h)

2h

)
= lim
h→0

1

4h2
(ϕ(2h) + ϕ(−2h)− 2ϕ(0))

= lim
h→0

1

4h2
E[exp(i2hX) + exp(−i2hX)− 2]

= lim
h→0

1

4h2
E[(exp(ihX)− exp(−ihX))2]

= − lim
h→0

E

[(
sin(hX)

hX

)2

X2

]

≤ −E

[
lim inf
h→0

(
sin(hX)

hX

)2

X2

]
Fatou’s lemma (Theorem 4.13)

= −E[X2].

Since E[X2] ≤ −ϕ′′X(0) <∞, we have shown the result for k = 1.

To show the result for for general k, we use induction. Suppose ϕ
(2k+2)
X (0) exists. Then ϕ

(2k)
X (0) exists,

which implies E[X2k] < ∞ by the inductive hypothesis. We know E[X2k] = E[(Xk)2] ≥ 0. If E[X2k] = 0,
then X2k = 0 a.s. (because it is nonnegative), so E[X2k+2] = 0 and we are finished. Thus, we may assume
E[X2k] > 0.

Let Q : F → R be defined by

Q(A) := E

[
1A

X2k

E[X2k]

]
=

E[1AX
2k]

E[X2k]
.

By Lemma 4.56, Q is a probability measure. Let ϕQX(u) := EQ[exp(iuX)] be the characteristic function with
respect to the measure Q. Then,

ϕQX(u) = EQ[exp(iuX)]

= E

[
X2k exp(iuX)

E[X2k]

]
Lemma 4.56

=
E[X2k exp(iuX)]

E[X2k]

=
(−1)kϕ

(2k)
X (u)

E[X2k]
by part 1)

Thus, (ϕQX)′′(0) exists, which implies EQ[X2] < ∞ by our work in the case k = 1. By the definition of EQ,
we have E[X2k+2]/E[X2k] <∞, and finally, E[X2k+2] <∞.

Example 4.58. We give some examples of characteristic functions.

1) Dirac delta. If P (X = a) = 1, then ϕX(u) = exp(iua).

2) Gaussian. If X ∼ N (µ, σ2), then ϕX(u) = exp(iuµ− 1
2σ

2u2). (See Lemma 4.62.)

3) Bernoulli. If X ∼ Ber(p), then ϕX(u) = (1− p) + p exp(iu).

4) Binomial. If X ∼ Bin(n, p), then it is the sum of n i.i.d. Ber(p) random variables X1, . . . , Xn, so using
independence (Proposition 1.9),

ϕX(u) := E[exp(iuX)] = E[exp(iu(X1 + · · ·+Xn))] = E[exp(iuX1)]n = (1− p+ p exp(iu))n.
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5) Poisson. If P (X = n) = e−λ λ
n

n! for n ≥ 0, then

ϕX(u) := E[exp(iuX)] =
∑
n≥0

eiune−λ
λn

n!
= e−λ

∑
n≥0

(eiuλ)n

n!
= exp(λ(eiu − 1)).

6) Exponential. If X ∼ Expon(λ), then ϕ(u) = λ
λ−iu .

The most important property of the characteristic function is that it uniquely determines the distribution
of the random variable.

Theorem 4.59 (Inversion theorem). Let X be a random variable with cdf F and characteristic function
ϕ(u) = E[exp(iuX)].

1) Let a < b in R, and let F (x−0 ) := limx↗x0 F (x). We have

F (b) + F (b−)

2
− F (a) + F (a−)

2
= lim
c→∞

Φ(c),

where

Φ(c) :=

∫ c

−c

exp(−ita)− exp(−itb)
it

ϕ(t) dt .

2) If
∫
R|ϕ(u)| du <∞, then F has a density f and f is continuous.

Proof of 1). We define the function gc as

gc(x) :=

∫ c

−c

sin(t(x− a))− sin(t(x− b))
t

dt

=

∫ c(x−a)

−c(x−a)

sinu

u
du−

∫ c(x−b)

−c(x−b)

sinu

u
du u = t(x− a), u = t(x− b)

= 2

∫ c(x−a)

0

sinu

u
du−2

∫ c(x−b)

0

sinu

u
du .

Recalling the Dirichlet integral ∫ ∞
0

sinu

u
du = π/2,

we observe the limiting behavior of gc as c tends to infinity.

lim
c→∞

gc(x) =


0 x > b or x < a,

2π a < x < b,

π x ∈ {a, b}.

We can also rewrite this as a simple function.

lim
c→∞

gc(x) = 2π1(a,b)(x) + π(1{a}(x) + 1{b}(x)).
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This allows to arrive at the desired result.

Φ(c) =

∫ c

−c

exp(−ita)− exp(−itb)
it

E[exp(itX)] dt

= E

[
1

2π

∫ c

−c

exp(−it(X − a))− exp(−it(X − b))
it

dt

]
Fubini (Theorem 4.16)

= E

[
1

2π

∫ c

−c

sin(t(X − a))− sin(t(X − b))
t

dt

]
terms involving cosine are odd

=
1

2π
E[gc(X)]

=
1

2π
E[2π1(a,b)(X) + π(1{a}(X) + 1{b}(X))]

= P (a < X < b) +
1

2
P (X = a) +

1

2
P (X = b)

= F (b−)− F (a) +
1

2
(F (a)− F (a−) + F (b)− F (b−))

=
F (b) + F (b−)

2
− F (a) + F (a−)

2
.

Proof of 2). Let

f(x) :=
1

2π

∫ ∞
−∞

e−itxϕ(t) dt .

Since we have
∫∞
−∞|ϕ(t)| dt < ∞ by assumption, we know f is well-defined and continuous in x. [Fourier

transform of L1 function is continuous.]
Let a < b with F continuous at both a and b.∫ b

a

f(x) dx =

∫ b

a

1

2π

∫ ∞
−∞

e−itxϕ(t) dt dx

=
1

2π

∫ ∞
−∞

ϕ(t)

∫ b

a

e−itx dx dt Fubini (Theorem 4.16)

= lim
c→∞

1

2π

∫ c

−c

exp(−ita)− exp(−itb)
it

ϕ(t) dt

= lim
c→∞

Φ(c)

= F (b)− F (a). by part 1)

Now let a < b with F not necessarily continuous at a and b. Because there are countably many discon-
tinuities of F , there exist decreasing sequences (an)n≥1 and (bn)n≥1 that converge to a and b from above,
such that F is continuous at each an and bn. By absolute continuity of f , we have

F (b)− F (a) = lim
n→∞

(F (bn)− F (an)) = lim
n→∞

∫ bn

an

f(x) dx =

∫ b

a

f(x) dx,

so f is a density for F .

Corollary 4.60. The distribution of a random variable is uniquely determined by its characteristic function.

We remark that there is also an inversion formula for random d-dimensional vectors, and thus the distri-
bution of a d-dimensional random variable is uniquely determined by its characteristic function.

Corollary 4.61. A random vector X := (X1, . . . , Xd) has independent components if and only if ϕX(u) =
ϕX1

(u1) · · ·ϕXd(ud).
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Proof. If X has independent components, then

ϕX(u) = E[eiu
TX ] = E[eiu1X1 ] · · ·E[eiudXd ] = ϕX1

(u1) · · ·ϕXd(ud).

Conversely, suppose ϕX(u) = ϕX1
(u1) · · ·ϕXd(ud). Let Y1, . . . Yd be independent random variables with

characteristic functions ϕX1 , . . . , ϕXd (i.e., Xk
d
= Yk for each k), and let Y := (Y1, . . . , Yd). Then ϕX = ϕY ,

so by the inversion formula, X
d
= Y .

Lemma 4.62. If X ∼ N (0, 1), then its characteristic function is ϕX(u) = e−u
2/2.

Proof. If v ∈ R, then

E[evX ] =
1√
2π

∫ ∞
−∞

e−x
2/2evx dx

=
ev

2/2

√
2π

∫ ∞
−∞

e−(x−v)2/2 dx

= ev
2/2.

Now let v ∈ C. The function ev
2/2 is analytic. The function E[evX ] is analytic, since its derivative is

E[XevX ] (by the dominated convergence theorem). Since the two functions agree for real v, they agree for
all complex v by analytic continuation. Letting v = iu proves the lemma.

Note that the same proof can be adapted to show that ϕX(u) = exp(iuµ− 1
2σ

2u2) if X ∼ N (µ, σ2).

Example 4.63. If X,Y ∼ N (0, 1) are independent, then what is the distribution of X + Y ? One approach
is to directly find the pdf.

fX+Y (z) =

∫ ∞
−∞

fX(x)fY (z − x) dx = · · · = 1

2
√
π
e−z

2/4,

so X + Y ∼ N (0, 2).
However, it is much easier to consider the characteristic functions and apply the inversion theorem

(Theorem 4.59).

E[eiu(X+Y )] = E[eiuX ] E[eiuY ] = e−u
2

.

The first equality is due to independence of X and Y .

Theorem 4.64 (Continuity theorem). Let X1, X2, . . . be random variables on probability spaces (Ωn,Fn, Pn)
respectively, with ϕn := ϕXn .

1) If Xn
d−→ X for some random variable X, then ϕn → ϕX pointwise for every u ∈ R.

2) If limn→∞ ϕn(u) exists for all u ∈ R and the limit function ϕ(u) := limn→∞ ϕn(u) is continuous at u = 0,

then ϕ is the characteristic function of a random variable X, and Xn
d−→ X.

Proof. If the Xn converge in distribution to X, then by definition E[f(Xn)] → E[f(X)] for any continuous

bounded function f . The first statement then follows immediately by writing E[eiu
TX ] = E[cos(uTX)] +

iE[sin(uTX)] and noting that sin and cos are continuous and bounded.
For the second statement, see §18.1 in Probability with Martingales by David Williams.

Theorem 4.65 (Central limit theorem). Let X1, X2, . . . be i.i.d. (independently and identically distributed)
random variables on a common probability space (Ω,F , P ) with E[X2

1 ] <∞ and σ :=
√

Var(X1) > 0. Then

1√
n

n∑
i=1

Xi − E[Xi]

σ

d−→ Z

as n→∞, where Z ∼ N (0, 1).
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Proof. Let Y := (X1 − E[X1])/σ. Then E[Y ] = 0 and E[Y 2] = 1. By Theorem 4.57, we have

ϕY (u) = 1− u2

2
+ u2ε(u),

where limu→0 ε(u) = 0. Then,

ϕY/
√
n(u) = ϕY (u/

√
n) = 1− u2

2n
+
u2

n
ε(u/
√
n).

Let ϕn be the characteristic function of 1√
n

∑n
i=1

Xi−E[Xi]
σ , which is the sum of n i.i.d. random variables

with the same distribution as Y/
√
n. Then,

ϕn(u) =

(
1− u2

2n
+
u2

n
ε(u/
√
n)

)n
logϕn(u) = n log

(
1− u2

2n
+
u2

n
ε(u/
√
n)

)
lim
n→∞

logϕn(u) = lim
δ↘0

1

δ
log

(
1− δ u

2

2

)
δ := 1/n

lim
n→∞

logϕn(u) = lim
δ↘0

−u2/2

1− δ u2

2

L’Hôpital’s rule

lim
n→∞

logϕn(u) = −u2/2

lim
n→∞

ϕn(u) = e−u
2/2.

Applying the continuity theorem (Theorem 4.64) finishes the proof.

4.8 Normal distributions

Definition 4.66. A d × d matrix C = [ci,j ] is symmetric if ci,j = cj,i for all i, j. A symmetric matrix is
positive semidefinite if uTCu ≥ 0 for all u ∈ Rd. A symmetric matrix is positive definite if uTCu > 0
for all u ∈ Rd \ {0}.

Lemma 4.67. By the spectral theorem, a symmetric d × d real matrix C has real eigenvalues λ1, . . . , λd.
There exists a matrix U such that UTU = UUT = Id (orthogonal) and such that

UTCU =

λ1

. . .

λd

 .
Lemma 4.68.

• A symmetric matrix is positive semidefinite if and only if its eigenvalues are nonnegative.

• A symmetric matrix is positive definite if and only if its eigenvalues are strictly positive.

• A symmetric matrix is positive definite if and only if it is positive semidefinite and invertible.

Definition 4.69. Let X be a d-dimensional random vector with square-integrable components. Let E[X] :=
(E[X1], . . . ,E[Xd])

T ∈ Rd and let Cov(X) := [Cov(Xi, Xj)] ∈ Rd×d.

Lemma 4.70. Cov(X) is symmetric and positive definite.
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Proof.

uT Cov(X)u =
∑
i,j

uiuj Cov(Xi, Xj)

= Cov

 d∑
i=1

uiXi,

d∑
j=1

ujXj


= Var

(
d∑
i=1

uiXi

)
≥ 0.

Lemma 4.71. Cov(X) is positive definite if and only if 1, X1, . . . , Xd are linearly independent in L2.

Proof. uT Cov(X)u > 0 for all u ∈ Rd \ {0} if and only if Var(uTX) > 0 for all u ∈ Rd \ {0}, if and only if

P

(
u0 +

d∑
i=1

uiXi = 0

)
< 1

for all (u0, u1, . . . , ud) ∈ Rd+1 \ {0}.

Definition 4.72. We call a d-dimensional random variable X normal or Gaussian if ϕX(u) = exp(iuTµ−
1
2u

TCu) for u ∈ Rd, C a symmetric positive semidefinite matrix. We denote this by X ∼ Nd(µ,C).
We say X is regular normal if C is invertible, and degenerate normal otherwise.

Note that normal random vectors are completely characterized by their first and second moments.

Example 4.73. Consider the random vector (Z,Z) where Z ∼ N (0, 1). Its covariance matrix is C =

[
1 1
1 1

]
,

which is not invertible. The distribution lies completely in a one-dimensional subspace of R2 so there is no
density.

Lemma 4.74. Let ρ(x) := 1√
2π
e−x

2/2. Then

f(x1, . . . , xd) := ρ(x1) · · · ρ(xd)

is the density of a probability measure on (Rd,B(Rd)). Then X : Rd → Rd defined to be the identity map is a
random vector whose components are independent standard normal. Its characteristic function decomposes
as

ϕX(u) = E[eiu
TX ] = E[eiu1X1 ] · · ·E[eiudXd ] = e−u

Tu/2.

The following proposition shows that there exists a random vector following the distribution Nd(µ,C)
for any choice of µ ∈ Rd and symmetric positive semidefinite C ∈ Rd×d.

Proposition 4.75. Let µ ∈ Rd and C ∈ Rd×d be symmetric and positive semidefinite.

1) There exists a symmetric positive semi-definite matrix A ∈ Rd×d such that A2 = C. If Z ∼ Nd(0, Id),
then X := µ+AZ ∼ Nd(µ,C), with E[X] = µ and Cov(X) = C.

2) The components of X are independent if and only if Cov(Xi, Xj) = 0 for all i 6= j.

3) If C is invertible, then X has density

1

(2π)d/2
√

detC
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
.
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4) If C is not invertible, then ARd is a strict subspace of Rd and X cannot have a density.

5) For every v ∈ Rk and M ∈ Rk×d, we have Y := v +MX ∼ Nk(v +Mµ,MCMT ).

Proof. Let U be an orthogonal matrix such that D := UTCU is a diagonal matrix whose diagonal entries
are the eigenvalues of C (Lemma 4.67), which are nonnegative because C is positive semidefinite. We may
take the square root of these diagonal entries to obtain another diagonal matrix denoted

√
D. Letting A :=

U
√
DUT gives a symmetric positive semidefinite matrix satisfying A2 = U

√
DUTU

√
DUT = UDUT = C.

It is clear that E[X] = µ. Moreover, because the components of Z are independent, we have

Cov(X) = E[(X − EX)(X − EX)T ] = E[AZZTAT ] = AE[ZZT ]AT = AIdA
T = AAT = C.

Finally,

ϕX(u) = eiu
Tµ E[eiu

TAZ ] = eiu
TµϕZ(ATu) = exp

(
iuTµ− 1

2
uTAATu

)
= exp

(
iuTµ− 1

2
uTCu

)
,

proving 1).
To prove 2), note that Cov(Xi, Xj) = 0 for all i 6= j if and only if C is diagonal, if and only if

ϕX(u) = eiu
Tµ− 1

2u
TCu = ϕX1

(u1) · · ·ϕXd(ud),

if and only if the components are independent (Corollary 4.61).
Note that C is invertible if and only if A is invertible. To prove 3), note that for any B ∈ B(Rd),

P (X ∈ B) = P (Z ∈ A−1(B − µ))

=

∫
A−1(B−µ)

1

(2π)d/2
e−

1
2 z
T z dz

=

∫
B

1

(2π)d/2
exp

(
−1

2
(x− µ)TC−1(x− µ)

)
1√

detC
dx,

with the change of variables z = A−1(x− µ) and dz = dx/
√

detC.
To prove 4), note that A is not invertible, so ARd is a strict subspace of Rd which therefore has zero

Lebesgue measure. If X had density f , then

P (X ∈ B) =

∫
B∩(µ+ARd)

f(x) dx = 0

for all B ∈ B(Rd), a contradiction.
Finally, 5) follows using the argument and result from 1).

ϕY (u) = eiu
T v E[eiu

TMX ] = eiu
T vϕX(MTu) = exp

(
iuT v + iuTMµ− 1

2
uTMCMTu

)
.

Proposition 4.76. A d-dimensional random vector X is normal if and only if vTX is [one-dimensional]
normal for all v ∈ Rd. [Note that we allow one-dimensional normal distributions to have zero variance, i.e.,
point masses.]

Proof. If X ∼ Nd(µ,C), then for any v ∈ Rd, we have

ϕvTX(u) = E[eiuv
TX ] = exp

(
iuvTµ− 1

2
u2vTCv

)
,

which implies vTX ∼ N1(vTµ, vTCv).
Conversely, if vTX is normal for all v ∈ Rd, then X is square-integrable. Let µ := E[X] and C := Cov(X).

Then noting that the characteristic function corresponding to Y ∼ N1(a, b) is ϕY (w) = exp
(
iwa− 1

2w
2b
)
,

we have

ϕX(u) = E[eiu
TX ] = ϕY (1) = exp

(
iuTµ− 1

2
uTCu

)
because a = E[uTX] = uTµ and b = Var(uTX) = uTCu.
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4.9 Gaussian processes

Definition 4.77. Let I be a nonempty set. A family (Xi)i∈I of random variables on a probability space is
called a Gaussian process if (Xi1 , . . . , Xid) is d-dimensional normal for any d and any d-tuple (i1, . . . , id)
of distinct elements of I.

Definition 4.78. A function C : I2 → R is symmetric if Ci,j = Cj,i for all i, j ∈ I. Such a function is
positive semidefinite if for any d the matrix [Cik,i` ]

d
k,`=1 ∈ Rd×d is positive semidefinite for any d-tuple

(i1, . . . , id) of different elements of I. Positive definiteness is defined analogously.

Lemma 4.79. If (Xi)i∈I is a Gaussian process, then let µXi := E[Xi] and CXi,j := Cov(Xi, Xj). Then CX

is symmetric and positive semidefinite.

Theorem 4.80. Let I be nonempty, and fix functions µ : I → R and C : I2 → R2 with C symmetric and
positive semidefinite. Then there exists a Gaussian process (Xi)i∈I with mean µ and covariance C.

Proof. For every tuple (i1, . . . , id) of different elements of I, let P i1,...,id be the probability measure associated
with the distribution

N


ui1...
uid

 ,
ci1,i1 · · · ci1,id

...
. . .

...
cid,i1 · · · cid,id

 .


This family is consistent, so applying the Kolmogorov Extension Theorem (Theorem 3.46) finishes the
proof.

Example 4.81 (White noise). For any nonempty set I there exists a Gaussian process (Xi)i∈I such that
E[Xi] = 0 and Var(Xi) = 1 for all i ∈ I, and such that Cov(Xi, Xj) = 0 for i 6= j.

Note that if I = N for example, then a realization of (Xi)i∈I would appear to “jump around,” which
presents no problem because the topology on N is discrete. However, if I = R+ for example, a realization of
(Xi)i∈I does not necessarily have path regularity; it would “jump around” and not be continuous.

Example 4.82 (Brownian motion). There exists a Gaussian process (Xt)t∈R+ with E[Xt] = 0 and
Cov(Xt, Xs) = t∧s. To justify this, note that we need to verify that t∧s is a positive semi-definite function.
Given a tuple (t1, . . . , tn) ∈ Rn, we may assume without loss of generality that 0 ≤ t1 < t2 < · · · < tn because
the positive semidefiniteness of the matrix generated by this tuple (in the definition of positive semidefinite
function) does not change when permuting the components of the tuple.

Note that the matrix generated by this tuple is
t1 t1 · · · t1
t1 t2 · · · t2
t1 t2 · · · t3
...

...
. . .

...
t1 t2 · · · tn.

 .
One could prove the positive semidefiniteness of this matrix by working with the matrix directly, but we
provide an indirect approach instead.

Suppose we had a Hilbert space H that contained elements f1, . . . , fn such that 〈fi, fj〉 = ti ∧ tj for each
i, j. Then we can immediately see that the matrix is positive semidefinite.

n∑
i=1

n∑
j=1

uiuj(ti ∧ tj) =

n∑
i=1

n∑
j=1

uiuj〈fi, fj〉 =

〈
n∑
i=1

uifi,

n∑
j=1

ujfj

〉
≥ 0.

To achieve this, let H := L2(R) and let fi := 1[0,ti] for each i. Then

〈fi, fj〉 :=

∫ ∞
−∞

fi(x)fj(x) dx = ti ∧ tj ,

as desired.
We now observe some properties of this process.
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• X0 = 0 almost surely. To see this, note that E[X2
0 ] = 0 ∧ 0 = 0.

• Stationary increments. For t > s, we have Xt−Xs ∼ N (0, t−s); note that this depends only on the
length of the increment [s, t] and not its location (stationarity). To show this note that E[Xt−Xs] = 0,
that

E[(Xt −Xs)
2] = Cov(Xt, Xt)− 2 Cov(Xt, Xs) + Cov(Xs, Xs) = t− 2s+ s = t− s,

and that Xt −Xs is normal due Proposition 4.76 and the definition of a Gaussian process.

• Independent increments. For t > s > v > u, the random variables Xt − Xs and Xv − Xu are
independent. To show this, note that

Cov(Xt−Xs, Xv−Xu) = Cov(Xt, Xv)−Cov(Xs, Xv)−Cov(Xt, Xu)+Cov(Xs, Xu) = v−v−u+u = 0.

Note that despite these nice properties of the distributions, a realization (Xt(ω))t∈R+ is not necessarily
path regular; it can “jump around.” It can be shown that there exists a Gaussian process (Bt)t∈R+ with
continuous paths such that Bt = Xt almost surely for each t ∈ R+. This is a nontrivial result and we omit
its verification. This process (Bt)t∈R+

is called a Brownian motion.
A Lévy process is a process with stationary and independent increments. Brownian motion is the only

type of Lévy process that has continuous paths.

5 Martingales

5.1 Conditional expectation

Definition 5.1. Let µ1 and µ2 be two measures on a measurable space (Ω,F). We say µ2 is absolutely
continuous with respect to µ1 (denoted µ2 � µ1) if for any A ∈ F such that µ1(A) = 0, we also have
µ2(A) = 0. We say µ1 and µ2 are equivalent (denoted µ1 ∼ µ2) if µ1 � µ2 and µ2 � µ1.

Lemma 5.2. If f : Ω→ R+ ∪ {∞} is a measurable function on the measure space (Ω,F , µ1), then

µ2(A) :=

∫
A

f dµ1

is a measure that is absolutely continuous with respect to µ1. If f is integrable, then µ2 is finite.

Theorem 5.3 (Radon-Nikodym). Let µ1 and µ2 be measures on a measurable space (Ω,F) such that µ2 � µ1

and µ1 is σ-finite. Then there exists a measurable function f : Ω→ R+ ∪ {∞} such that

µ2(A) =

∫
A

f dµ1

for all A ∈ F . This function f is unique up to µ1-a.e. equality.

Proposition 5.4 (Conditional expectation). Let (Ω,F , P ) be a probability space, let G ⊂ F be a sub-σ-
algebra, and let X ∈ L1(Ω,F , P ). Then there exists a unique Y ∈ L1(Ω,G, P ) such that

E[1AY ] = E[1AX]

for all A ∈ G. We often denote Y by E[X | G]. Note that uniqueness in L1(Ω,G, P ) allows for P -almost
everywhere equality.

Proof. Suppose first that X is a nonnegative random variable. Then µ(A) := E[1AX] is a finite measure on
G that is absolutely continuous with respect to P . By the Radon-Nikodym theorem (Theorem 5.3), there
exists a random variable Y ∈ L1(Ω,G, P ) such that µ(A) = E[1AY ] for all A ∈ G, which shows the existence
of E[X | G] when X ≥ 0.

If X is instead an arbitrary random variable in L1(Ω,F , P ), then by the Radon-Nikodym theorem again
we have Y1, Y2 ∈ L1(Ω,G, P ) such that E[1AY1] = E[1AX

+] and E[1AY2] = E[1AX
−] for all A ∈ G. Then

E[1A(Y1 − Y2)] = E[1AX], which shows the existence of E[X | G].
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To show uniqueness, suppose Y,Z ∈ L1(Ω,G, P ) satisfy E[1AY ] = E[1AZ] = E[1AX] for all A ∈ G. Then
because {Y > Z} and {Y < Z} are in G, this equality implies

E
[
1{Y >Z}(Y − Z)

]
= 0,

E
[
1{Y <Z}(Z − Y )

]
= 0.

However, these are expectations of nonnegative random variables, so they are both zero only if Y = Z almost
surely.

A random variable that equals E[X | G] almost everywhere is called a version of E[X | G].

Definition 5.5. Let X ∈ L1(Ω,F , P ), let Z be a random variable on (Ω,F , P ), and let G ⊂ F be a
sub-σ-algebra. Then we define

E[X | Z] := E[X | σ(Z)],

where we recall that σ(Z) := {Z−1(B) : B ∈ B(R)}. For A ∈ F , we define

P (A | G) := E[1A | G],

P (A | Z) := E[1A | σ(Z)].

Proposition 5.6. Let X,Y ∈ L1(Ω,F , P ) and G ⊂ F be a sub-σ-algebra.

a) If X is G-measurable, then E[X | G] = X. In particular, E[c | G] = c for any constant c ∈ R.

b) E[aX + Y | G] = aE[X | G] + E[Y | G] for all a ∈ R.

c) E[X | G] ≥ E[Y | G] a.s. if X ≥ Y a.s.

d) Tower property. E[E[X | G] | H] = E[X | H] for every sub-σ-algebra H of G.

e) If Y is G-measurable and XY ∈ L1, then E[XY | G] = Y E[X | G].

f) If X is independent of G (i.e., the σ-algebras σ(X) and G are independent), then E[X | G] = E[X].

g) If G = {∅,Ω}, then E[X | G] = E[X].

h) If ϕ : R→ R is convex such that ϕ(X) ∈ L1, then E[ϕ(X) | G] ≥ ϕ(E[X | G]) a.s.

Proposition 5.7. Let (Ω,F , P ) be a probability space carrying two σ-algebras G and H. Then,

E[X | σ(G,H)] = E[X | G]

for every X ∈ L1(Ω,F , P ) such that σ(X,G) is independent of H.

Definition 5.8. Let X be an extended random variable (taking values in R ∪ {±∞}) on (Ω,F , P ) and let
G ⊂ F be a sub-σ-algebra. If E[X−] <∞, we define

E[X | G] := lim
k→∞

E[X ∧ k | G].

If E[X+] <∞, we define
E[X | G] := lim

k→−∞
E[X ∨ k | G].

Theorem 5.9. Let X1, X2, . . . be a sequence in L1(Ω,F , P ) and G ⊂ F be a sub-σ-algebra.

a) (Conditional version of Beppo Levi’s monotone convergence theorem)

If there exists Y ∈ L1 and a random variable with values in R ∪ {∞} such that Y ≤ Xn ↗ X a.s., then
E[Xn | G]↗ E[X | G] a.s.

b) (Conditional version of Fatou’s lemma)

If there exists Y ∈ L1 such that Xn ≥ Y a.s. for all n, then

lim inf
n→∞

E[Xn | G] ≥ E
[
lim inf
n→∞

Xn | G
]

a.s.

c) (Conditional version of Lebesgue’s dominated convergence theorem)

If there exist X,Y ∈ L1 such that |Xn| ≤ Y for all n and Xn → X a.s., then

E[Xn | G]→ E[X | G] a.s.
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5.2 Martingale definitions

Definition 5.10. A stochastic process on (Ω,F , P ) is a family of random variables (Xi)i∈I where I is a
nonempty index set. If I = N, we call (Xn)n≥0 a discrete-time stochastic process.

Definition 5.11. A sequence (Fn)n≥0 of σ-algebras is a filtration on (Ω,F , P ) if F0 ⊂ F1 ⊂ · · · ⊂ F .

Definition 5.12. A stochastic process (Xn) is adapted to (Fn) if Xn is Fn-measurable for each n ≥ 0. It
is predictable with respect to (Fn) if Xn is Fn−1-measurable for each n ≥ 1.

Definition 5.13. Let (Xn)n≥0 be such that Xn ∈ L1(Ω,Fn, P ); note that this implies that (Xn) is adapted
to (Fn).

• (Xn) is a martingale with respect to Fn if E[Xn+1 | Fn] = Xn for each n ≥ 0.

• (Xn) is a submartingale with respect to Fn if E[Xn+1 | Fn] ≥ Xn for each n ≥ 0.

• (Xn) is a supermartingale with respect to Fn if E[Xn+1 | Fn] ≤ Xn for each n ≥ 0.

Be wary of the directions of the inequalities in the definitions of submartingales and supermartingales.

Lemma 5.14. Let (Xn)n≥1 be a martingale with respect to (Fn)n≥0. If m ≤ n, then E[Xn+1 | Fm] = Xm.
In particular, E[Xn+1] = E[X0].

Proof. By repeated use of the tower property of conditional expectation (Proposition 5.6),

E[Xn+1 | Fm] = E[E[Xn+1 | Fn] | Fm]

= E[Xn | Fm]...
= E[Xm+1 | Fm]

= Xm.

Similarly,
E[Xn+1] = E[E[Xn+1 | Fn]] = E[Xn] = · · · = E[X0].

Definition 5.15. A stochastic process (Xn)n≥0 generates the natural filtration

FXn := σ(X0, X1, . . . , Xn) := σ({X−1
k (B) : B ∈ B(R), 0 ≤ k ≤ n}).

A stochastic process (Xn)n≥0 is a martingale, submartingale, or a supermartingale if it is one with
respect to its natural filtration (FXn ).

Note that whether a stochastic process (Xn)n≥0 is a martingale depends on the filtration F . Increasing
the filtration by “adding more information” may cause a martingale to no longer be a martingale.

Example 5.16.

1) Let Y0, Y1, . . . be a sequence of independent random variables in L1(Ω,F , P ) such that E[Yn] = 0 for all
n ≥ 1. Then Xn :=

∑n
i=1 Yi is a martingale because

E[Xn+1 | FXn ] = E[Xn + Yn+1 | FXn ]

= Xn + E[Yn+1] Xn is FXn -measurable; Yn+1 is indep. of FXn
= Xn.

An example is Y0 := 0 and P (Yn = 1) = P (Yn = −1) = 1/2 for n ≥ 1; this gives the standard Bernoulli
random walk (Xn)n≥1.
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2) Let Y0, Y1, . . . be a sequence of independent random variables in L1(Ω,F , P ) such that E[Yn] = 0 for all
n ≥ 1. Then Xn :=

∑n
i=1 Yi is a martingale because Xn is integrable due to the independence of the Yi,

and because

E[Xn+1 | FXn ] = E[XnYn+1 | FXn ]

= Xn E[Yn+1] Xn is FXn -measurable; Yn+1 is indep. of FXn
= Xn.

3) Let X ∈ L1(Ω,F , P ) and let (Fn)n≥1 be a filtration. Then Xn := E[X | Fn] defines a uniformly integrable
martingale. [See Corollary 5.47.]

Example 5.17. Let P (Yn = 1) = P (Yn = −1) = 1/2 for n ≥ 0 and let Xn :=
∑
n≥0 2−nYn. Every path will

converge. However, although Xn :=
∑
n≥0

Yn
n does not converge everywhere, we can show that it converges

an almost all paths.

Definition 5.18. Let (Xn)n≥0 and (Vn)n≥1 be two stochastic processes on (Ω,F , P ). Let ∆Xn := Xn−Xn−1

for n ≥ 1. We define the martingale transform of X by V as

(V ·X)n :=

{
0 n = 0,∑n
i=1 Vi∆Xi n ≥ 1.

Theorem 5.19. Let (Xn)n≥0 be a martingale with respect to (Fn)n≥0. Let (Vn)n≥1 be Fn-predictable and
such that

E[|Vn∆Xn|] <∞

for n ≥ 1. Then ((V ·X)n)n≥1 is a martingale with respect to (Fn)n≥0.

Proof. Note that for each fixed n ≥ 1, (V ·X)n is Fn-measurable because it is formed by adding, subtracting,
and multiplying random variables Vi and Xi for i ≤ n, each of which is Fn-measurable; thus ((V ·X)n)n≥1

is adapted to (Fn)n≥1. Similarly, since we are given that Vn∆Xn ∈ L1, we see that (V ·X)n is also in L1.
Finally,

E[(V ·X)n+1 | Fn]

= E[Vn+1∆Xn+1 | Fn] + (V ·X)n Vi, Xi ∈ Fn for i ≤ n
= Vn+1 E[∆Xn+1 | Fn] + (V ·X)n Vn+1 ∈ Fn because (Vn)n≥1 is (Fn)n≥0-predictable

= (V ·X)n. (Xn)n≥0 is a martingale

5.3 Stopping times and Doob’s optional stopping theorem

Definition 5.20. A stopping time with respect to a filtration (Fn)n≥0 on a probability space is an
extended random variable τ : (Ω,F , P )→ N ∪ {∞} such that

{τ = n} ∈ Fn

for each n ≥ 0.

The intuition is that τ is the a time for stopping the process, and whether or not you stop at time n (the
event {τ = n}) depends only on the history up to and including time n (the σ-algebra Fn).

Lemma 5.21. In the definition above, the defining condition “{τ = n} ∈ Fn for each n ≥ 0” can be replaced
with the equivalent condition “{τ ≤ n} ∈ Fn for each n ≥ 0.”
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Proof.

{τ = n} = {τ ≤ n} \ {τ ≤ n− 1}

{τ ≤ n} =

n⋃
i=0

{τ = i}.

Definition 5.22. A stopping time τ is finite if P (τ =∞) = 0. A stopping time is bounded if there exists
N ∈ N such that P (τ ≤ N) = 1.

Lemma 5.23. A stopping time τ defines a stopping σ-algebra

Fτ := {A ∈ F : A ∩ {τ = n} ∈ Fn,∀n ∈ N}.

Note that the sets in Fτ do not necessarily belong to any Fn.

Lemma 5.24. Let τ and σ be stopping times with respect to (Fn)n≥0.

a) τ + σ is a stopping time with respect to (Fn)n∈N.

b) τ ∨ σ is a stopping time with respect to (Fn)n∈N.

c) τ ∧ σ is a stopping time with respect to (Fn)n∈N.

d) Fτ∧σ = Fτ ∩ Fσ.

Corollary 5.25. If τ ≤ σ are stopping times, then Fτ ⊂ Fσ.

Proof. Note that τ ∧ σ = τ and use part d) of Lemma 5.24.

Example 5.26. Constants τ ≡ m ∈ N are stopping times, since {τ = n} is either ∅ or Ω.

Example 5.27 (Hitting time). Let (Xn)n≥0 be a stochastic process adapted to (Fn)n≥0 and let B ∈ B(R).
Then

τ := inf{n ∈ N : Xn ∈ B}

is a stopping time because

{τ = n} = {Xn ∈ B} ∩
n−1⋂
i=0

{Xi /∈ B} ∈ Fn.

Lemma 5.28. Let (Xn)n≥0 be a stochastic process adapted to (Fn)n≥0 and let τ be a stopping time with
respect to (Fn). Then Xτ1{τ<∞} is Fτ -measurable. In particular, (Xτ

n)n≥0 is adapted to (Fn), where
Xτ
n := Xn∧τ .

Proof. We would like to show that {Xτ1{τ<∞} ≤ t} is in Fτ for any t ∈ R. Referring to the definition of
Fτ , we see that indeed, for any n ∈ N,

{Xτ1{τ<∞} ≤ t} ∩ {τ = n} = {Xn ≤ t} ∩ {τ = n} ∈ Fn.

Let σ := τ ∧ n. By Lemma 5.24, it is a stopping time, and moreover, 1{σ<∞} ≡ 1. By our work above,
Xσ is Fσ-measurable. By Corollary 5.25, we have Fσ ⊂ Fn, so Xσ is Fn-measurable.

Corollary 5.29 (Elementary version of the optional stopping theorem). Let (Xn)n≥0 be a martingale and τ
a stopping time, both with respect to (Fn)n≥0. Then (Xτ

n)n≥0 is a martingale. In particular, E[Xτ ] = E[X0]
if τ is bounded.
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Proof. If Vn := 1{τ≥n}, then
Xτ
n = X0 + (V ·X)n

because for any realization τ(ω) ∈ N of τ , we have

X0 + (V ·X)n = X0 +

τ(ω)∧n∑
i=1

∆Xi = Xτ(ω)∧n.

By Theorem 5.19, (Xτ
n)n≥0 is a martingale.

If τ is bounded, then there exists N ∈ N such that τ = τ ∧N . Thus,

E[Xτ ] = E[Xτ∧n] = E[Xτ∧0] = E[X0],

where the second equality is due to Lemma 5.14 and the fact that (Xτ
n)n≥0 is a martingale.

Theorem 5.30 (Doob’s optional stopping theorem). Let (Xn)n≥0 be a martingale and let σ ≤ τ be bounded
stopping times, all with respect to (Fn)n≥0. Then

E[Xτ | Fσ] = Xσ.

In particular,
E[Xτ ] = E[X0].

Proof. Pick N ∈ N such that σ ≤ τ ≤ N . We have already shown that Xσ is Fσ-measurable (Lemma 5.28).
We just need to show

E[Xτ1A] = E[Xσ1A]

for all A ∈ Fσ.

E[Xτ1A] =

N∑
n=0

E[Xτ1A∩{σ=n}]

=

N∑
n=0

E[Xτ
N1A∩{σ=n}]

=

N∑
n=0

E[E[Xτ
N1A∩{σ=n} | Fn]] tower property (Proposition 5.6)

=

N∑
n=0

E[E[Xτ
N | Fn]1A∩{σ=n}] A ∈ Fσ =⇒ A ∩ {σ = n} ∈ Fn

=

N∑
n=0

E[Xτ
n1A∩{σ=n}] Lemma 5.14

=

N∑
n=0

E[Xτ
σ1A∩{σ=n}] σ = n

= E[Xσ∧τ1A]

= E[Xσ1A].
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5.4 Doob’s decomposition theorem

Theorem 5.31 (Doob’s decomposition theorem). Let (Xn)n≥0 be a submartingale with respect to (Fn)n≥0.
Then there exists a martingale (Mn)n≥0 and a nondecreasing predictable process (An)n≥0 such that A0 = 0
and

Xn = Mn +An.

Moreover, this decomposition is unique.

Corollary 5.32. Let Xn be a submartingale and Vn a nonnegative predictable process, both with respect to
(Fn)n≥0, such that E[|Vn∆Xn|] < ∞. Then ((V · X)n)n≥0 is a submartingale with Doob’s decomposition
((V ·M)n)n≥0 and ((V ·A)n)n≥0.

5.5 An example: one-dimensional random walk

Let Y0, Y1, . . . be independent random variables in L1. Let Y0 = 0 and

P (Yi = 1) = p, P (Yi = −1) = 1− p,

for all i ≥ 1. Let

Xn :=

n∑
i=0

Yi,

and define Fn := σ(Y0, Y1, . . . , Yn) so that (Xn) is adapted to (Fn).
Fix A,B ∈ N and define

τA,B := inf{n ∈ N : Xn ∈ {A,−B}}.

It is a stopping time because

{τA,B = n} = ({Xn = A} ∪ {Xn = −B}) ∩
n−1⋂
i=1

{Xi ∈ [−B + 1, A− 1]} ∈ Fn.

Moreover, τA,B is finite (see Lemma 5.33 below). Note that XτA,B = A1{τA,B=A} − B1{τA,B=−B}. We
consider two cases: p = 1/2 and p 6= 1/2.

If p = 1/2, then (Xn) is a martingale. Since τA,B ∧ n is a stopping time (Lemma 5.24) that is bounded,
Doob’s optional stopping theorem (Theorem 5.30) implies E[XτA,B∧n] = E[X0] = 0 for all n. Because
−B ≤ XτA,B∧n ≤ A for all n, we may apply the dominated convergence theorem (Theorem 4.15) to get
E[XτA,B ] = 0. Solving the system

0 = E[XτA,B ] = A · P (XτA,B = A)−B · (τA,B = −B)

1 = P (XτA,B = A) + P (τA,B = −B)

gives

P (τA,B = A) =
B

A+B
, P (τA,B = −B) =

A

A+B
.

We now compute the expectation of τA,B (still in the case p = 1/2). First, we note that (X2
n − n)n≥0 is

a martingale. It is clearly (Fn)-adapted, and we have

E[X2
n − n | Fn−1] = E[(Xn−1 + Yn)2 − n | Fn−1]

= E[X2
n−1 + 2Xn−1Yn + Y 2

n − n | Fn−1]

= X2
n−1 − n+ 2Xn−1 E[Yn | Fn−1] + E[Y 2

n | Fn−1] Xn−1 is Fn−1-measurable

= X2
n−1 − n+ 2Xn−1 E[Yn] + E[Y 2

n ] Yn is indep. of Fn−1

= X2
n−1 − n+ 0 + 1

= X2
n−1 − (n− 1).
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We may apply Doob’s optimal stopping theorem (Theorem 5.30) to (X2
n − n) to get

E[X2
τA,B∧n]− E[τA,B ∧ n] = E[X2

τA,B∧n − τ
A,B ∧ n] = 0.

The monotone convergence theorem (Theorem 4.11) gives E[τA,B ∧ n] → E[τA,B ] as n → ∞, and the
dominated convergence theorem (Theorem 4.15) gives E[X2

τA,B∧n]→ E[X2
τA,B ] as n→∞, so we have

E[τA,B ] = E[X2
τA,B ]

= A2P (XτA,B = A) +B2P (τA,B = −B)

=
A2B

A+B
+

B2A

A+B

= AB.

We now examine the hitting times

τA := inf{n ≥ 0 : Xn = A},
τ−B := inf{n ≥ 0 : Xn = −B},

still in the case p = 1/2. Note that τA,B = τA ∧ τ−B . We have

1 ≥ P (τA <∞) ≥ P (τA < τ−B) = P (XτA,B = A) =
B

A+B

for any choice of B. Letting B tend to infinity shows that P (τA <∞) = 1. A similar argument shows that
τB is also finite.

However,
E[τA] ≥ E[τA,B ] = AB

for any choice of B. Letting B tend to infinity shows that E[τA] = ∞; similarly, E[τB ] = ∞. Thus, τA and
τB are examples of random variables that are almost everywhere finite but not integrable.

We now consider the case p 6= 1/2. We claim (Zn)n≥0 is a martingale, where

Zn :=

(
1− p
p

)Xn
.

Indeed, it is (Fn)-adapted, and

E[Zn | Fn−1] = E

[(
1− p
p

)Xn ∣∣∣∣∣ Fn−1

]

=

(
1− p
p

)Xn−1

E

[(
1− p
p

)Yn ∣∣∣∣∣ Fn−1

]
Xn−1 is Fn−1-measurable

=

(
1− p
p

)Xn−1

E

[(
1− p
p

)Yn]
Yn is indep. of Fn−1

= Zn−1

(
1− p
p
· p+

p

1− p
· (1− p)

)
= Zn−1.

By Doob’s optional stopping theorem (Theorem 5.30), 1 = E[Z0] = E[ZτA,B∧n] for all n. By the dominated
convergence theorem (Theorem 4.15), we have E[ZτA,B ] = 1. Solving the system

1 = E[ZτA,B ] =

(
1− p
p

)A
P (XτA,B = A) +

(
1− p
p

)−B
P (τA,B = −B)

1 = P (XτA,B = A) + P (τA,B = −B)
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gives

P (XτA,B = A) =

(
1−p
p

)B
− 1(

1−p
p

)A+B

− 1

, P (XτA,B = −B) =

(
1−p
p

)A
− 1(

1−p
p

)A+B

− 1

.

We now compute the expectation of τA,B . Note that (Wn)n≥0 is a martingale, where

Wn := Xn − n(2p− 1)

because

E[Wn | Fn−1] = E[Xn − n(2p− 1) | Fn−1]

= Xn−1 − n(2p− 1) + E[Yn | Fn−1] Xn−1 is Fn−1-measurable

= Xn−1 − n(2p− 1) + E[Yn] Yn is independent of Fn−1

= Xn−1 − n(2p− 1) + (p− (1− p))
= Xn−1 − (n− 1)(2p− 1)

= Wn−1.

Again by Doob’s optional stopping theorem (Theorem 5.30), we have

E[XτA,B∧n]− (2p− 1) E[τA,B ∧ n] = E[XτA,B∧n − (2p− 1)(τA,B ∧ n)] = 0.

As before, the dominated convergence theorem (Theorem 4.15) and the monotone convergence theorem
(Theorem 4.11) give E[XτA,B∧n]→ E[XτA,B ] and E[τA,B ∧ n]→ E[τA,B ] respectively, so we have

E[τA,B ] =
1

2p− 1
E[XτA,B ] =

1

2p− 1

A
(

1−p
p

)B
− 1(

1−p
p

)A+B

− 1

−B

(
1−p
p

)A
− 1(

1−p
p

)A+B

− 1

.
Finally, we examine the hitting times τA and τ−B . Note that τ−B ≥ B because it takes at least B steps

to reach −B from the origin. Thus, τ−B tends to infinity with B. This implies

P (τA <∞) = lim
B→∞

P (τA < τ−B)

= lim
B→∞

P (τA,B = A)

= lim
B→∞

(
1−p
p

)B
− 1(

1−p
p

)A+B

− 1

=

1 p > 1/2,(
p

1−p

)A
p < 1/2.

Lemma 5.33. The stopping time τA,B defined above is finite, i.e., P (τA,B <∞) = 1.

5.6 Doob’s upcrossing inequality

Proposition 5.34. Let (Xn)n≥0 be a submartingale with respect to (Fn)n≥0, and let ϕ : R→ R be a convex
function such that ϕ(Xn) ∈ L1 for each n. If at least one of the conditions below holds, then (ϕ(Xn))n≥0 is
a submartingale.

a) Xn is a martingale.

b) ϕ is nondecreasing.
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Proof. The conditional version of Jensen’s inequality gives

E[ϕ(Xn+1) | Fn] ≥ ϕ(E[Xn+1 | Fn]).

If a) holds, then ϕ(E[Xn+1 | Fn]) = ϕ(Xn), so (ϕ(Xn))n≥0 is a submartingale. If b) holds, then ϕ(E[Xn+1 |
Fn]) ≥ ϕ(Xn) because (Xn)n≥0 is a submartingale and because ϕ is nondecreasing; thus (ϕ(Xn))n≥0 is a
submartingale.

We now provide the setup for the theorem. Let (Xn)n≥0 be a submartingale with respect to (Fn)n≥0,
and let a < b be real numbers. We define

τ1 := inf{n ≥ 0 : Xn ≤ a},
τ2 := inf{n > τ1 : Xn ≥ b},
τ3 := inf{n > τ2 : Xn ≤ a},...
τ2k := inf{n > τ2k−1 : Xn ≥ b},

τ2k+1 := inf{n > τ2k : Xn ≤ a}.

Lemma 5.35. The τm defined above are stopping times.

Proof. Clearly τ1 is a stopping time (Example 5.27). If τm is a stopping time, then

{τm+1 = n} =

n−1⋃
`=0

{τm = `} ∩ {Xn ∈ S} ∩
n−1⋂
j=`+1

{Xj /∈ S}

 ∈ Fn,
where S := (−∞, a] if m is even, and S := [b,∞) if m is odd.

We define the number of upcrossings by time n as

βn(a, b) :=

{
0 n < τ2,

max{m ≥ 1 : τ2m < n} otherwise.

This is the number of times that the process crosses from below a to above b in the time interval [0, n].

Theorem 5.36 (Doob’s upcrossing inequality). If (Xn)n≥0 is a submartingale, then

E[βn(a, b)] ≤ 1

b− a
E[(Xn − a)+].

Proof. We claim (Yn)n≥0 is a nonnegative submartingale, where Yn := (Xn − a)+. It is nonnegative by
definition, and Proposition 5.34 shows that it is a submartingale because the function x 7→ (x − a)+ is
convex. We have

{Xn ≥ b} = {Xn − a ≥ b− a} = {Yn ≥ b− a},
{Xn ≤ a} = {(Xn − a)+ ≤ 0} = {Yn ≤ 0}.

This gives an important relationship between upcrossings in (Xn) and (Yn).

βXn (a, b) = βYn (0, b− a).

Because the number of upcrossings of a general submartingale can be transformed into an analogous function
of a nonnegative submartingale, proving the theorem reduces to showing

E[βn(0, b)] <
1

b
E[Xn]

where (Xn) is a nonnegative submartingale. Note that the nonnegativity of (Xn)n≥0 now implies Xτ2k+1
= 0

for all k ≥ 0.
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We define

Vn :=


0 n ≤ τ1,
1 τ2m−1 < n ≤ τ2m,
0 τ2m < n ≤ τ2m+1.

This process takes the value 1 only when the process is in the process of crossing from below a to above b.
We claim (Vn)n≥0 is predictable with respect to (Fn)n≥0. Since Vn takes only two values, it suffices to show
that {Vn = 1} ∈ Fn−1. Indeed,

{Vn = 1} =

∞⋃
m=1

{τ2m−1 < n ≤ τ2m} =

∞⋃
m=1

({τ2m−1 ≤ n− 1} ∩ {τ2m ≤ n− 1}c) ∈ Fn−1.

We also claim
(V ·X)n ≥ bβn(0, b)

for each n. Indeed, we have

(V ·X)n :=

{
(V ·X)n−1 Vn = 0

(V ·X)n−1 + ∆Xn Vn = 1

=

{
Xτ2 +Xτ4 + · · ·+Xτ2k τ2k < n ≤ τ2k+1,

Xτ2 +Xτ4 + · · ·+Xτ2k +Xn τ2k+1 < n ≤ τ2k+2.

≤ bβn(0, b).

The second equality follows because we are only adding the differences ∆Xn on the upswings from 0 to b,
and cancellations simply leave the value at the top of the swing. The inequality holds because the number
of terms in the sum is less than βn(0, b) and because X2k ≥ b for each k.

We are now equipped to finish the proof.

E[bβn(a, b)] ≤ E[(V ·X)n] see above

= E

[
n∑
i=1

Vi(Xi −Xi−1)

]

=

n∑
i=1

E[Vi(Xi −Xi−1)]

=

n∑
i=1

E[Vi E[(Xi −Xi−1) | Fi−1]] (Vn)n≥0 is (Fn)-predictable, see above

≤
n∑
i=1

E[E[Xi −Xi−1 | Fi−1]] E[Xi −Xi−1 | Fi−1] ≥ 0 and Vi ∈ {0, 1}

= E[Xn −X0]

≤ E[Xn]. X0 ≥ 0

5.7 Convergence theorems

Theorem 5.37. Let (X1) be a submartingale that is bounded in L1 (i.e., supn‖Xn‖1 < ∞). Then there
exists a random variable X∞ such that Xn → X∞ almost surely, and ‖X∞‖1 ≤ supn‖Xn‖1.

Proof. Fix a < b. Then

E[(Xn − a)+] ≤ E[|Xn − a|] ≤ E[|Xn|] + |a| ≤ sup
m
‖Xm‖1 + |a| <∞,
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for each n, so supn E[(Xn − a)+] <∞. Thus, using the fact that βn(a, b) is increasing in n, we have

E
[

lim
n→∞

βn(a, b)
]

= lim
n→∞

E[βn(a, b)] monotone convergence (Theorem 4.11)

≤ sup
n

E[(Xn − a)+]

b− a
upcrossing inequality (Theorem 5.36)

<∞.

This implies

P
(

lim
n→∞

βn(a, b) =∞
)

= 0.

If the limit of Xn does not exist, it must oscillate between its lim inf and lim sup; however, we have just
shown that this almost never happens.

P

(
lim inf
n→∞

Xn < lim sup
n→∞

Xn

)
≤
∑
a,b∈Q
a<b

P

(
lim inf
n→∞

Xn < a < b < lim sup
n→∞

Xn

)
union bound

≤
∑
a,b∈Q
a<b

P
(

lim
n→∞

βn(a, b) =∞
)

= 0.

Thus there exists some X∞ for which Xn → X∞ almost surely (e.g., X∞ := lim infn→∞Xn).
The final claim follows from Fatou’s lemma.

‖X∞‖1 ≤ lim inf
n→∞

‖Xn‖1 Fatou’s lemma (Theorem 4.13)

≤ sup
n
‖Xn‖1.

Corollary 5.38. Let (Xn)n≥0 be a uniformly integrable submartingale. Then there exists a random variable
X∞ ∈ L1 such that Xn → X∞ converges almost surely and in L1. Moreover, E[X∞ | Fn] ≥ Xn for all n.

Proof. Theorem 5.37 gives the existence of X∞ such that Xn → X∞ almost surely. Theorem 4.38 shows
that X∞ is in L1 and that Xn → X∞ in L1.

Fix A ∈ Fn. Then 1AXm → 1AX∞ almost surely, and (1AXm)m≥0 is uniformly integrable. Then,

E[1AX∞] = lim
m→∞

E[1AXm] Theorem 4.38

≥ E[1AXn]. E[1AXm] ≥ E[1AXn] for m ≥ n (submartingale)

By the definition of conditional expectation, we have E[X∞ | Fn] ≥ E[Xn | Fn] = Xn.

Corollary 5.39. A submartingale (Xn)n≥0 that is bounded from above converges almost surely.

Proof.

E[|Xn|] = E[X+
n ] + E[X−n ]

= 2 E[X+
n ]− E[X+

n ] + E[X−n ]

= E[X+
n ]− E[Xn]

≤ 2 sup
m

E[X+
m]− E[X0] submartingale

<∞. (Xn)n≥0 is bounded from aobve

Thus (Xn)n≥0 is bounded in L1, so Theorem 5.37 implies the desired result.
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The following corollary consists of the analogues of the above results for supermartingales and martingales.

Corollary 5.40.

• A L1-bounded supermartingale converges almost surely.

• A uniformly integrable supermartingale (Xn)n≥0 converges almost surely and in L1 to a random variable
X∞ ∈ L1. Moreover, E[X∞ | Fn] ≤ Xn for all n.

• A supermartingale that is bounded from below converges almost surely.

• If (Xn)n≥0 is a uniformly integrable martingale, there exists X∞ ∈ L1 such that Xn → X∞ almost
surely and in L1. Moreover, E[X∞ | Fn] = Xn for all n.

Corollary 5.41. Let (Xn)n≥0 be a submartingale that is bounded in Lp (i.e., supn‖Xn‖p < ∞) for some
p > 1. Then there exists a random variable X∞ ∈ L1 such that Xn → X∞ almost surely and in L1.

Proof. Corollary 4.40 implies that (Xn)n≥0 is uniformly integrable, so we may apply Corollary 5.38.

Theorem 5.42. If (Xn)n≥0 is an L2-bounded martingale, then it converges in L2.

Theorem 5.43. If (Xn)n≥0 is an Lp-bounded martingale, then it converges in Lp.

Example 5.44. Let Y1, Y2, . . . be random variables such that P (Yn = 1) = P (Yn = −1) = 1/2 for all n.
Consider (Xn)n≥0 where

Xn :=

n∑
k=1

Yk
k
.

It is a martingale. Moreover,

E[X2
n] =

n∑
k=1

E[Y 2
k ]

k2
+ 2

∑
1≤j<k≤n

E[YjYk]

jk

=

n∑
k=1

1

k2
independence of the Yk

≤
∞∑
k=1

1

k2
<∞,

so the martingale is bounded in L2. By Corollary 5.41, we have the existence of X∞ ∈ L1 such that
Xn → X∞ almost surely and in L1. Theorem 5.42 also shows that it converges in L2 as well.

Example 5.45. Let Y1, Y2, . . . be random variables such that P (Yn = 1) = P (Yn = −1) = 1/2 for all n.
The process (eY1+···+Yn)n≥0 is a strict submartingale, since E[eYk ] = cosh(1) > 1. So, we can normalize by
this factor to obtain a martingale (Xn)n≥0 where

Xn :=
eY1

E[eY1 ]
· · · eYn

E[eYn ]
= eY1+···+Yn−n log cosh(1).

Note that this martingale is positive.
Since ‖Xn‖1 = 1 for all n, the martingale is bounded in L1, so Theorem 5.37 implies the existence of

X∞ such that Xn → X∞ almost surely. [To arrive at this conclusion, we could also note that the process is
a supermartingale that is bounded from below, and then apply Corollary 5.40.]

We claim X∞ = 0. Indeed, note that Y1 + · · · + Yn − n log cosh(1) is the symmetric random walk with
downward drift, and that exponentiating it gives the process (Xn)n≥0 which we showed converges almost
surely. Due to the downward drift, the only way this can happen is if Y1 + · · · + Yn − n log cosh(1) → −∞
and Xn → 0. [This is an indirect proof that adding downward drift to the symmetric random walk makes it
tend to negative infinity.] However, this shows (Xn)n≥0 does not converge in L1 because E[Xn] = 1 while
E[X∞] = 0. Consequently, the martingale is not uniformly integrable either (Theorem 4.38).
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Note that E[Xn] = 1 for all n, while Xn → 0 almost surely. Since almost all paths tend to zero, more
and more paths are close to zero as n increases. However, at the same time, the height paths that are far
from zero get higher and higher as n increases, in order to maintain the average E[Xn] = 1.

This martingale is the discrete analogue of exponential Brownian motion.

Theorem 5.46. If X ∈ L1(Ω,F , P ), then the collection

{E[X | G] : G ⊂ F is a sub-σ-algebra}

is uniformly integrable.

Corollary 5.47. Let (Fn)n≥0 be a filtration on a probability space (Ω,F , P ). If X ∈ L1(Ω,F , P ), then
Xn := E[X | Fn] defines a uniformly integrable martingale.

Definition 5.48. Given a filtration (Fn)n≥0, the union
⋃
n≥0 Fn is an algebra but not necessarily a σ-

algebra. [Consider Ω := N and let Fn be the collection of subsets of {1, . . . , n} and their complements in N.
For any k, the set Ak := {2k} ∈ F2k is in

⋃
n≥0 Fn, but

⋃
k≥1Ak = {2k | k ≥ 1} is not in any Fn because it

and its complement are both infinite.]
Thus, we define ∨

n≥0

Fn := σ

⋃
n≥0

Fn

.
Theorem 5.49 (Lévy’s upward theorem). Let X ∈ L1(Ω,F , P ) and let (Fn)n≥0 be a filtration. Let Xn :=
E[X | Fn] and X∞ := E[X | F∞] where F∞ :=

∨
n≥0 Fn. Then Xn → X∞ almost surely and in L1.

Proof. Since (Xn)n≥0 is a uniformly integrable martingale (Corollary 5.47), there exists X̃∞ ∈ L1(Ω,F∞, P )

such that Xn → X̃∞ almost surely and in L1.
Let A :=

⋃
n≥0 Fn; it is an algebra. For all A ∈ A,

E[X̃∞1A] = lim
n→∞

E[Xn1A] = E[X1A] Theorem 4.38

= lim
n→∞

E[E[X | Fn]1A]

= E[X1A]. 1A is Fn-measurable for all large n

However, we want to show this equality for all A ∈ F∞. Let M := {A ∈ F : E[X̃∞1A] = E[X1A]}. It is
a monotone class by the monotone convergence theorem (Theorem 4.11)). By the monotone class theorem

(Theorem 3.15), F∞ ⊂ M, so indeed E[X̃∞1A] = E[X1A] for all A ∈ F∞, showing X̃∞ = E[X | F∞] =:
X∞.

Our study of martingales gives us a quick proof of the following theorem.

Theorem 5.50 (Kolmogorov’s zero-one law). Let X1, X2, . . . be a sequence of independent random variables.
We define the tail σ-algebra by

G :=
⋂
n≥0

Gn

where Gn := σ(Xn+1, Xn+2, . . .). Then P (A) is either 0 or 1 for all A ∈ G. In particular, G-measurable
random variables are constant almost surely.

Proof. Let FXn := σ(X1, . . . , Xn) be the natural filtration, and let FX∞ :=
∨
n≥0 FXn . Note that

G ⊂ σ(X1, X2, . . .) =
⋃
n≥0

FXn ⊂ FX∞.

Moreover, Gn := σ(Xn+1, Xn+2, . . .) is independent of FXn := σ(X1, . . . , Xn) for each n.
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For A ∈ G,

1A = E[1A | FX∞] G ⊂ FX∞
= lim
n→∞

E[1A | FXn ] Theorem 5.49

= E[1A]. 1A is Gn-measuarable; Gn is indep. of FXn

This implies that P (A) is either zero or one.

Theorem 5.51 (Reverse martingale convergence). Let G0 ⊃ G1 ⊃ · · · be a decreasing sequence of σ-algebras
on a probability space (Ω,F , P ) and let X ∈ L1(Ω,F , P ). Then

E[X | Gn]→ E[X | G]

almost surely and in L1, where G :=
⋂
n≥0 Gn.

Proof. Let Xn := E[X | Gn] for each n ≥ 0. Then Xn, Xn−1, . . . , X1, X0 is a finite martingale for each n ≥ 1.
Letting βn(a, b) be the number of upcrossings with respect to [a, b] for each finite martingale, we have

E[ lim
n→∞

βn(a, b)] = lim
n→∞

E[βn(a, b)] monotone convergence (Theorem 3.15)

≤ lim
n→∞

E[(X0 − a)+]

b− a
Doob’s upcrossing inequality (Theorem 5.36)

for any a < b. By the same argument in the proof of Theorem 5.37, there exists a G-measurable random
variable X∞ such that Xn → X∞ almost surely. [To see that X∞ is G-measurable, note that X∞ =
limn≥mXn shows that X∞ is Gn-measurable, but this is true for any m.] By Theorem 5.46, (Xn)n≥0 is
uniformly integrable, so Xn → X∞ in L1 as well.

For each A ∈ G, we have

E[X∞1A] = lim
n→∞

E[Xn1A] L1-convergence

= lim
n→∞

E[X1A] Xn := E[X | Gn],

thus X∞ = E[X | G], completing the proof.

5.8 Strong law of large numbers

Lemma 5.52. Let X1, X2, . . . be i.i.d. random variables in L1, and let Sn :=
∑n
i=1Xi for each n ≥ 1. Then

E[X1 | Sn, Sn+1, Sn+2, . . .] = E[X1 | Sn] =
Sn
n
.

Theorem 5.53 (Strong law of large numbers). Let X1, X2, . . . be i.i.d. in L1(Ω,F , P ). Then

1

n

n∑
i=1

Xi → E[X1]

almost surely and in L1.

Proof. Let Sn :=
∑n
i=1 Sn, let Gn := σ(Sn, Sn+1, . . .) for each n ≥ 1, and let G :=

⋂
n≥1 Gn. Then

1

n

n∑
i=1

Sn =
Sn
n

= E[X1 | Gn] Lemma 5.52

→ E[X1 | G] Theorem 5.51
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almost surely and in L1.
Now note that

E[X1 | G] = lim
n→∞

Sn
n

= lim
n→∞

X1 + · · ·+Xm−1

n
+
Xm + · · ·+Xn

n

= lim
n→∞

Xm + · · ·+Xn

n
first term vanishes as n→∞

is σ(Xm, Xm+1, . . .) for any m ≥ 1, so it is
⋂
m≥1 σ(Xm, Xm+1, . . .)-measurable. By Kolmogorov’s zero-one

law (Theorem 5.50), E[X1 | G] is constant [almost surely], so it must be E[X1].

5.9 Maximal inequalities

Theorem 5.54 (Doob’s maximal inequality for probabilities). If (Xn)n≥0 is a submartingale and λ > 0,
then

λ · P
(

max
k≤n

Xk ≥ λ
)
≤ E[Xn1{maxk≤nXk≥λ}] ≤ E[X+

n ].

Proof. The second inequality is clear, so we only show the first inequality. Let τk := n∧ inf{k ∈ N : Xk ≥ λ}.
Then,

E[Xn] ≥ E[Xτλ ] (Xn) is a submartingale

= E[Xτλ1{maxk≤nXk≥λ}] + E[Xτλ1{maxk≤nXk<λ}]

≥ λ · P
(

max
k≤n

Xk ≥ λ
)

+ E[Xτλ1{maxk≤nXk<λ}] def. of τλ

= λ · P
(

max
k≤n

Xk ≥ λ
)

+ E[Xn1{maxk≤nXk<λ}]. τλ = n in this event

Subtracting the last term from both sides gives the first inequality.

Corollary 5.55. If (Xn)n≥0 is a martingale, λ > 0, and p ≥ 1, then

P

(
max
k≤n
|Xk| ≥ λ

)
≤ E[|Xn|p]

λp
.

Proof. By Proposition 5.34, (|Xn|p)n≥0 is a submartingale, so we may apply Theorem 5.54.

Lemma 5.56. For any a, b > 0, the following hold.

a log b ≤ a log a+
b

e
,

a log+ b ≤ a log+ a+
b

e

where log+(x) := (log x)+ denotes the positive part of log x.

Theorem 5.57 (Doob’s Lp maximal inequality). Let (Xn)n≥0 be a nonnegative submartingale. We clearly
have the lower bound ∥∥∥∥max

k≤n
Xk

∥∥∥∥
p

≥ ‖Xn‖p

for any p ≥ 1. However, we also have the following upper bounds.

1) If p > 1, then ∥∥∥∥max
k≤n

Xk

∥∥∥∥
p

≤ p

p− 1
‖Xn‖p.
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2) For p = 1, we have ∥∥∥∥max
k≤n

Xk

∥∥∥∥
1

≤ e

e− 1
(1 + ‖Xn log+Xn‖1),

where log+ x := (log x)+ denotes the positive part of log x.

Proof. Let Y := maxk≤nXk and let Ym := Y ∧m. Theorem 5.54 implies

λP (Y ≥ λ) ≤ E[Xn1{Y≥λ}].

Thus,
λP (Ym ≥ λ) ≤ E[Xn1{Ym≥λ}]

because if m < λ then the probability on the left-hand side is zero and the inequality holds, and otherwise
if m ≥ λ then Ym ≥ λ ⇐⇒ Y ≥ λ.

1) Let p > 1, and assume E[Xp
n] <∞ (otherwise, the inequality holds immediately). Note the identity

xp = p

∫ x

0

λp−1 dλ = p

∫ ∞
0

1{x≥λ}λ
p−1 dλ .

Applying this to x := Ym and taking the expectation gives

E[Y pm] = p

∫ ∞
0

P (Ym ≥ λ)λp−1 dλ Fubini (Theorem 4.16)

≤ p
∫ ∞

0

E[Xn1{Ym≥λ}]λ
p−2 dλ see beginning of proof

= pE

[
Xn

∫ Ym

0

λp−2 dλ

]
Fubini (Theorem 4.16)

=
p

p− 1
E[XnY

p−1
m ]

≤ p

p− 1
‖Xn‖p‖Y p−1

m ‖q where q is s.t.
1

p
+

1

q
= 1; Hölder’s inequality (Theorem 4.19)

=
p

p− 1
‖Xn‖p E[Y pm]1/q. (p− 1)q = p

Dividing both sides by E[Y pm]1/q gives ‖Ym‖p ≤ p
p−1‖Xn‖p. Since this holds for each m, taking m → ∞

and using the monotone convergence theorem (Theorem 4.11) gives ‖Y ‖p ≤ p
p−1‖Xn‖p.

2) Assume E[Xn log+Xn] <∞ (otherwise, the inequality holds immediately).

E[Ym]− 1 = E

[∫ Ym

0

dλ

]
− 1

=

∫ ∞
0

P (Ym ≥ λ) dλ−1 Fubini (Theorem 4.16)

≤
∫ ∞

1

P (Ym ≥ λ) dλ

∫ 1

0

P (Ym ≥ λ) dλ ≤
∫ 1

0

dλ = 1

≤
∫ ∞

1

1

λ
E[Xn1{Ym≥λ}] dλ see beginning of proof

= E

[
Xn

∫ Ym

1

1

λ
dλ

]
Fubini (Theorem 4.16)

= E[Xn log+ Ym]

≤ E[Xn log+Xn] +
E[Ym]

e
. Lemma 5.56
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Rearranging gives E[Ym] ≤ e
e−1 (1+E[Xn log+Xn]). Letting m tend to infinity and applying the monotone

convergence theorem (Theorem 4.11) gives

E[Y ] ≤ e

e− 1
(1 + E[Xn log+Xn]).

6 Markov chains

6.1 Kernels

Definition 6.1. Let (Ω,F) and (E, E) be measurable spaces. A mapping K : Ω, E → R+ ∪ {∞} is a
stochastic kernel from (Ω,F) to (E, E) if

a) ω 7→ K(ω,A) is a F-measurable random variable for each A ∈ E , and

b) A 7→ K(ω,A) is a measure on (E, E) for each ω ∈ Ω.

Example 6.2. If Ω := {1, . . . ,M} and E := {1, . . . , N} each with the discrete σ-algebra, then to define a
stochastic kernel it suffices to determine K(m, {n}) for each m ∈ Ω, n ∈ E (due to the second condition in
the definition of stochastic kernel). Thus the stochastic kernel can be represented as a matrix.

Example 6.3. Let k : Ω × E → R+ ∪ {∞} be a F ⊗ E-measurable function, and let ν be a measure on
(E, E). Then

K(ω,A) :=

∫
A

k(ω, e) ν(de)

is a stochastic kernel.

Definition 6.4. A stochastic kernel is finite if A 7→ k(ω,A) is a finite measure (i.e., k(ω,E) <∞) for each
ω ∈ Ω. A stochastic kernel is a transition probability kernel if A 7→ k(ω,A) is a probability measure
(i.e., k(ω,E) = 1) for each ω ∈ Ω.

Definition 6.5. Let (Ω,F , P ) be a probability space and let G ⊂ F be a sub-σ-algebra. A regular
conditional probability of P with respect to G is a transition probability kernel Q : (Ω,G)→ (Ω,F) such
that

Q(·, A) = P (A | G)

P -almost surely for all A ∈ F .

In general, the conditional probabilities P (A | G) do not necessarily satisfy the conditions of being a
kernel.

Lemma 6.6. If we assume P has a regular conditional probability Q with respect to G, then for every
X ∈ L1(Ω,F , P ),

QX :=

∫
X(ω′)Q(·, dω′)

equals E[X | G] P -almost surely.

Definition 6.7. Let X : (ω,F , P )→ (R,B(R)) be a random variable, and let G ⊂ F be a sub-σ-algebra. A
regular conditional distribution of X given G is any transition probability kernel Q : (Ω,G → (R,B(R))
such that

Q(·, A) = P (X ∈ A | G)

P -almost surely for all A ∈ B(R).

Theorem 6.8. Let X : (ω,F , P ) → (R,B(R)) be a random variable, and let G ⊂ F be a sub-σ-algebra.
Then there exists a regular conditional distribution of X given G.
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Proof. Let q ∈ Q and define

Cq := P (X ≤ q | G),

Ωqr := {Cq ≤ Cr}.

[In the definition of Ωqr, pick two versions of Cq and Cr.] Since {X ≤ q} ⊂ {X ≤ r} if q ≤ r, we have
Ωqr = Ω P -almost surely. Let

Ω0 :=
⋂
q,r∈Q
q<r

Ωqr.

Then Ω0 = Ω P -almost surely as well.
For all ω ∈ Ω0, the function q 7→ Cq(ω) is a nondecreasing function Q→ [0, 1]. If we define for t ∈ R and

ω ∈ Ω0 the function
Ct(ω) := lim

q∈Q
q↘t

Cq(ω),

then t 7→ Ct(ω) is a cdf for some distribution Q(ω, ·).
Then,

Q(ω,A) := 1Ω0
(ω)Q(ω,A) + 1Ωc0

(ω)δ0(A)

is a regular conditional distribution of X given G. Note that the choice of the Dirac measure is arbitrary; it
can be replaced by any probability measure.

6.2 Definition and basic properties

Let I be a countable state space. For simplicity we will implicitly assume I is either N or of the form
{0, 1, . . . , n} for some n.

Definition 6.9. A vector (λi)i∈I is a distribution if λi ≥ 0 for all i ∈ I and
∑
i∈I λi = 1. A matrix

(pi,j)i,j∈I is stochastic if each of its rows is a distribution.

Definition 6.10. A stochastic process (Xn)n≥0 on a probability space (Ω,F , P ), with Xn : Ω→ I for each
n, is a Markov chain with initial distribution λ and transition matrix p if

a) P (X0 = i) = λi, and

b) P (Xn+1 = in+1 | X0 = i0, X1 = i1, . . . , Xn = in) = pin,in+1 for any n ≥ 0 and i0, . . . , in ∈ I.

We say (Xn)n≥0 is Markov(λ, p).

Theorem 6.11. A discrete-time stochastic process (Xn)n≥0 is Markov(λ, p) if and only if

P (X0 = i0, X1 = i1, · · · , Xn = in) = λi0pi0,i1 · · · pin−1,in

for all n ≥ 0 and i0, . . . , in ∈ I.

Proof. If (Xn)n≥0 is Markov(λ, p), then

P (X0 = i0, . . . , Xn = in)

= P (X0 = i0) · P (X1 = i1 | X0 = i0) · · ·P (Xn = in | X0 = i0, . . . , Xn−1 = in−1)

= P (X0 = i0) · P (X1 = i1 | X0 = i0) · · ·P (Xn = in | Xn−1 = in−1)

= λi0pi0,i1 · · · pin−1,in .

The other direction is clear.

Corollary 6.12. For every initial distribution λ and stochastic matrix p, there exists a Markov(λ, p) process.

Proof. Apply the Kolmogorov Extension Theorem (Theorem 3.46).
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Theorem 6.13 (Markov property). Let (Xn)n≥0 be a Markov chain. If P (Xm = i) > 0, then, conditional
on the event {Xm = i}, the process (Xm+n)n≥0 is Markov(δi, p) and is independent of (X0, . . . , Xm).

Let the initial distribution λ be interpreted as a row vector. Then λp is a row vector with entries
(λp)j :=

∑
i λipi,j . We can also multiply p with itself.

p0
ij := δi,j identity matrix

p1
i,j := pi,j

p2
i,j :=

∑
k

pi,kpk,j

p3
i,j :=

∑
k

p2
i,kpk,j

...

This proves the following result.

Lemma 6.14. If (Xn)n≥0 is Markov(λ, p), then

P (Xn = j) = (λpn)j ,

P (Xn+m = j | Xm = i) = pni,j ,

for all m ≥ 0.

6.3 Class structure

Definition 6.15. We let Pi denote the probability measure P (· | X0 = i), and let Ei denote the expectation
with respect to this measure. We say i leads to j and write i → j if Pi(Xn = j for some n ≥ 0) > 0. We
say i communicates with j and write i↔ j if i→ j and j → i. By definition we have i↔ i.

Theorem 6.16. For i 6= j, the following are equivalent.

(i) i→ j.

(ii) pi,i1pi1,i2 · · · pin−1,j > 0 for some n ≥ 1 and i1, . . . , in−1 ∈ I.

(iii) pni,j > 0 for some n ≥ 1.

Definition 6.17. Since communication is an equivalence relation on I, it induces a partition of I into
communicating classes. A communicating class C ⊂ I is closed if i ∈ C and i→ j together imply j ∈ C.
A state i ∈ I is absorbing if {i} is a closed class. We call a Markov chain or transition matrix irreducible
if all of I is a communicating class.

6.4 Hitting times and absorption probabilities

Definition 6.18. Let A ⊂ I. We define the hitting time of A by

HA := inf{n ≥ 0 : Xn ∈ A}.

We also define

hAi := Pi(H
A <∞),

kAi := Ei[H
A].

Theorem 6.19.
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a) The vector of hitting probabilities (hAi )i∈I is the minimal nonnegative solution to the system of equations

hAi =

{
1 i ∈ A,∑
j∈I pi,jh

A
j i /∈ A.

b) The vector of expected hitting times (kAi )i∈I is the minimal nonnegative solution to the system of equations

kAi =

{
0 i ∈ A,
1 +

∑
j /∈A pi,jk

A
j i /∈ A.

Proof. We first prove (hAi )i∈I is indeed a solution to the system. By definition, hAi = 1 for i ∈ A. If i /∈ A,
then conditioning on X1 and applying the Markov property (Theorem 6.13) gives the appropriate expression.

hAi =
∑
j∈I

Pi(X1 = j)Pi(H
A <∞ | X1 = j) =

∑
j∈I

pi,jh
A
j .

We now show that (hAi )i∈I is smaller than any other nonnegative solution (xi)i∈I to the system. For
i ∈ A we have hAi = xi = 1. For i /∈ A, we have

xi =
∑
j1∈I

pi,j1xj1

=
∑
j1∈A

pi,j1 +
∑
j1 /∈A

pi,j1xj1

= Pi(X1 ∈ A) +
∑
j1 /∈A

pi,j1
∑
j2∈A

pj1,j2 +
∑
j2 /∈A

pj1,j2xj2


= Pi(X1 ∈ A) + Pi(X1 /∈ A,X2 ∈ A) +

∑
j1,j2 /∈A

pi,j1pj1,j2xj2

...
= Pi(X1 ∈ A) + · · ·+ Pi(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A) +

∑
j1,...,jn /∈A

pi,j1 · · · pjn−1,jnxjn

...

Because xj ≥ 0 for all j ∈ I, the above implies

xi ≥ Pi(X1 ∈ A) + · · ·+ Pi(X1 /∈ A, . . . ,Xn−1 /∈ A,Xn ∈ A) = Pi(H
A ≤ n)

for all n ≥ 1. Taking the limit as n→∞ gives xi ≥ hAi .
The proof for (kAi )i∈I is analogous. To see that (kAi )i∈I is a solution to the system, note that by definition

kAi = 0 for i ∈ A, and for i /∈ A we condition on X1 and apply the Markov property (Theorem 6.13) as
before.

kAi =
∑
j∈I

Pi(X1 = j) Ei[H
A | X1 = j] =

∑
j∈I

pi,j(1 + kAj ) = 1 +
∑
j∈I

pi,jk
A
i = 1 +

∑
j /∈A

pi,jk
A
i .

We now show that (kAi )i∈I is smaller than any nonnegative solution (xi)i∈I to the system. If i ∈ A we
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have kAi = xi = 0. For i /∈ A,

xi = 1 +
∑
j1 /∈A

pi,j1xj1

= Pi(H
A ≥ 1) +

∑
j1 /∈A

pi,j1
1 +

∑
j2 /∈A

pj1,j2xj2


= Pi(H

A ≥ 1) + Pi(H
A ≥ 2) +

∑
j1,j2 /∈A

pi,j1pj1,j2xj2

...
= Pi(H

A ≥ 1) + · · ·+ P (HA ≥ n) +
∑

j1,...,jn /∈A

pi,j1 · · · pjn−1,jnxjn

...

Because xj ≥ 0 for all j ∈ I, the above implies

xi ≥
n∑
k=1

Pi(H
A ≥ k)

for all n ≥ 1. Taking the limit as n→∞ gives

xi ≥
∞∑
k=1

Pi(H
A ≥ k) = Ei[H

A] = kAi .

6.5 Strong Markov property

Theorem 6.20 (Strong Markov property). Let (Xn)n≥0 be Markov(λ, p) and let τ be a stopping time with
respect to the natural filtration (FXn )n≥0. If i is such that P (τ < ∞, Xτ = i) > 0, then, conditional on the
event {τ <∞} ∩ {Xτ = i}, the process (Xτ+n)n≥0 is Markov(δi, p) and is independent of FXτ .

6.6 Recurrence and transience

Definition 6.21. A state i ∈ I is recurrent if

Pi(Xn = i for infinitely many n) = 1,

and transient if
Pi(Xn = i for infinitely many n) = 0.

Theorem 6.25 shows that all states are either recurrent or transient.

Definition 6.22. We define

T 0
i := 0

Ti ≡ T 1
i := inf{n ≥ 1 : Xn = i}
T 2
i := inf{n ≥ T 1

i + 1 : Xn = i}...
T ki := inf{n ≥ T k−1

i + 1 : Xn = i}...
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In short, T ki is the time of the kth visit to state i strictly after time 0. We also define

Ski :=

{
T ki − T

k−1
i T k−1

i <∞,
0 otherwise.

time between visits to state i

Vi :=
∑
n≥0

1{Xn=i} number of visits to state i

fi := Pi(Ti <∞) probability of visiting state i if starting there.

Lemma 6.23. For k ≥ 2, conditional on T k−1
i <∞, the random variable Ski is independent of FXTk−1 , and

P (Ski = n | T k−1
i <∞) = Pi(Ti = n).

Proof. In the event {T k−1
i < ∞}, we also have XTk−1

i
= i. Therefore, by the strong Markov property

(Theorem 6.20), conditional on {T k−1
i <∞}, the process (XTk−1

i +n)n≥0 is Markov(δi, p) and is independent

of FX
Tk−1
i

. Noting that Ski = inf{n ≥ 1 : XTk−1
i +n = i} finishes the proof.

Lemma 6.24.

a) Ei[Vi] =
∑
n≥0 p

n
i,i.

b) Pi(Vi > k) = fki for each k ≥ 0.

Proof. To prove a), note that

Ei[Vi] = Ei

∑
n≥0

1{Xn=i}

 =
∑
n≥0

Pi(Xn = i) =
∑
n≥0

pni,i.

To prove b), we use induction. Note that X0 = i implies {Vi > k} = {T ki <∞} for all k ≥ 0. [Note that
Vi counts the visit at time 0, while T ki does not.]

Clearly the statement we are asked to show holds for k = 0, 1.

Pi(Vi > 0) = 1 = f0
i ,

Pi(Vi > 1) = Pi(Ti <∞) = f1
i .

Suppose the statement holds for some fixed k ≥ 2. We show it also holds for k + 1.

Pi(Vi > k + 1) = Pi(T
k+1
i <∞)

= Pi(T
k
i <∞, Sk+1

i <∞)

= Pi(S
k+1
i <∞ | T ki <∞) · P (T ki <∞)

= fif
k
i Lemma 6.23 and inductive hypothesis

= fk+1
i .

Theorem 6.25.

a) If Pi(Ti <∞) = 1, then i is recurrent and
∑
n≥0 p

n
i,i =∞.

b) If Pi(Ti <∞) < 1, then i is transient and
∑
n≥0 p

n
i,i <∞.

In particular, every state is either recurrent or transient.
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Proof. If Pi(Ti <∞) = 1, then Lemma 6.24 implies

Pi(Vi =∞) = lim
k→∞

Pi(Vi > k) = lim
k→∞

fki = 1,

which in turn implies that i is recurrent and∑
n≥0

pni,i = Ei[Vi] =∞.

If Pi(Ti <∞) < 1, then∑
n≥0

pni,i = Ei[Vi] =
∑
k≥0

Pi(Vi > k) =
∑
k≥0

fki =
1

1− fi
<∞.

This implies P (Vi <∞) = 1, i.e., i is transient.

Theorem 6.26. The states of a communicating class are either all recurrent or all transient.

Proof. Let i and j be the states of a communicating class, and suppose i is transient. There exists m,n ≥ 0
such that pmi,j > 0 and pnj,i > 0. For all k ≥ 0 we have pm+k+n

i,i ≥ pmi,jpkj,jpnj,i, so the transience of i implies∑
k≥0

pkj,j ≤
1

pmi,jp
n
j,i

∑
k≥0

pm+k+n
i,i <∞,

i.e., j is transient. Thus, the states of a communicating class that contains a transient state will all be
transient. Otherwise, all states of the class are recurrent.

Consequently, we can call a communicating class recurrent or transient based on what kind of states it
contains.

Theorem 6.27. A recurrent communicating class is closed.

Proof. We prove the contrapositive. Suppose C is a communicating class that is not closed. Then there
exists i ∈ C and j /∈ C such that i→ j, i.e., Pi(Xm = j) > 0 for some m ≥ 0. Then,

Pi(Xm = j and Xn = i for infinitely many n) = 0 j /∈ C
=⇒ Pi(Xn = i for infinitely many n) < 1 Pi(Xm = j) > 0,

implying i is not recurrent.

Theorem 6.28. Every finite closed communicating class is recurrent.

Proof. Let C be a finite closed communicating class, and let (Xn)n≥0 be a Markov chain starting in C. Then
there exists a state i ∈ C such that

0 < P (Xn = i for infinitely many n) = P (Xn = i for some n)Pi(Xn = i for infinitely many n),

where the inequality is by the definition of a closed communicating class, and the equality is due to the
Markov property. This implies P (Xn = i for some n), so i is recurrent.

Theorem 6.29. Assume p is an irreducible and recurrent transition matrix. Then for every initial distri-
bution λ, we have P (Tj <∞) = 1 for all j ∈ I.

Proof. Since P (Tj < ∞) =
∑
i∈I λiPi(Tj < ∞), it suffices to show that Pi(Tj < ∞) = 1 for each i ∈ I.

Choose m such that pmj,i > 0.

1 = Pj(Xn = j for infinitely many n)

= Pj(Xn = j for some n ≥ m+ 1)

=
∑
k∈I

Pj(Xn = j for some n ≥ m+ 1 | Xm = k)Pj(Xm = k)

=
∑
k∈I

Pk(Tj <∞)pmj,k.

Since
∑
k∈I p

m
j,k = 1, we must have Pk(Tj < ∞) = 1 for every k such that pmj,k > 0; in particular, Pi(Tj <

∞) = 1.
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6.7 Recurrence and transience of random walks

Example 6.30 (One-dimensional random walk). To be consistent with Section 5.5, we will use p to denote
the parameter of the random walk. It should not be confused with the transition matrix p.

Let I := Z, 0 < p < 1, pi,i+1 := q, and pi,i−1 = 1 − p for each i. The transition matrix is clearly
irreducible.

We now determine whether the states are transient or recurrent. Note the equation

P0(T0 <∞) =
1

2
P1(T0 <∞) +

1

2
P−1(T0 <∞).

Case 1. p = 1/2. By our results for hitting times in Section 5.5, we have P1(T0 <∞) = P−1(T0 <∞) = 1.
By the equation above, we have P0(T0 < ∞), proving that the state 0 here is recurrent, and thus
all states are recurrent.

Case 2. p 6= 1/2. If p < 1/2, then P−1(T0 < ∞) < 1, while if p > 1/2, then P1(T0 < ∞) < 1 (again, see
Section 5.5). In either case, we have P0(T0 <∞) < 1, proving that 0 is transient, and thus all states
are transient.

6.8 Invariant distributions

Definition 6.31. A measure λ [not necessarily a probability measure] on I is said to be invariant with
respect to a transition matrix p if λp = λ.

Theorem 6.32. If (Xn)n≥0 is Markov(λ, p) and λ is invariant with respect to p, then for every m ≥ 1,
(Xm+n)n≥0 is again Markov(λ, p).

Proof. Since P (Xm = i) = (λpm)i = λi, we have

P (Xm = i0, . . . , Xm+n = in) = λi0pi0,i1 · · · pn−1,n

for any n ≥ 0 and i0, . . . , in ∈ I.

Theorem 6.33. Let I be finite. Assume there exists i ∈ I and a vector (πj)j∈I such that pni,j → πj as
n→∞ for each j ∈ I. Then (πj)j∈I is an invariant distribution.

Proof. Because I is finite, we can interchange the limit and the finite sum.∑
j∈I

πj =
∑
j∈I

lim
n→∞

pni,j = lim
n→∞

∑
j∈I

pni,j = 1,

so (πj)j∈I is a distribution. To see it is invariant, note that

πj = lim
n→∞

pni,j = lim
n→∞

∑
k∈I

pni,kpk,j =
∑
k∈I

lim
n→∞

pni,kpk,j =
∑
k∈I

πkpk,j .

Example 6.34 (One-dimensional random walk). Consider the setup in Example 6.30. For any i, j ∈ I
we have pni,j → 0. However, the all-zero vector is not an invariant distribution (although it is an invariant
measure). This counterexample shows why the condition that I be finite is necessary in Theorem 6.33.

Definition 6.35. For i, k ∈ I, we define the expected time spent in i between visits to k.

γki := Ek

[
Tk−1∑
n=0

1{Xn=i}

]
.

Theorem 6.36. If p is irreducible and recurrent, then the following hold for all k ∈ I.

a) γkk = 1.
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b) γk := (γki )i∈I satisfies γkp = γk.

c) 0 < γki <∞ for all i ∈ I.

Proof. Since 1{Xn=k} ≡ 0 for 0 < n < Tk − 1 and Ek[1{Xn=k}] = 1, part a) is clear.
We now show part b). Note that {n ≤ Tk} = {Tk ≤ n − 1}c ∈ FXn−1, we have by the Markov property

(Theorem 6.13)
Pk(Xn−1 = i,Xn = j, n ≤ Tk) = Pk(Xn−1 = i, n ≤ Tk)pi,j .

By recurrence,
P (Tk <∞, X0 = XTk = k) = P (Tk <∞) = 1,

so we have

γkj := Ek

[
Tk−1∑
n=0

1{Xn=j}

]

= Ek

[
Tk∑
n=1

1{Xn=j}

]

= Ek

[ ∞∑
n=1

1{Xn=j}1{n≤Tk}

]

=

∞∑
n=1

Pk(Xn = j, n ≤ Tk)

=
∑
i∈I

∞∑
n=1

Pk(Xn−1 = i,Xn = j, n ≤ Tk)

=
∑
i∈I

pi,j

∞∑
n=1

Pk(Xn−1 = i, n ≤ Tk)

=
∑
i∈I

pi,j Ek

[ ∞∑
m=0

1{Xm=i,m≤Tk−1}

]
=:
∑
i∈I

γki pi,j ,

proving b).
For each i ∈ I, there exist m,n ≥ 0 such that pmi,k and pnk,i are strictly positive. Using parts a) and b),

we have the following two inequalities which together imply c).

γki ≥ γkkpnk,i > 0,

γki p
m
i,k ≤ γkk = 1.

Theorem 6.37. Let p be irreducible and let λ be an invariant measure such that λk = 1. Then λ ≥ γk. If
p is also recurrent, then λ = γk.
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Proof. For all j ∈ I,

λj =
∑
i∈I

λipi,j

= pk,j +
∑
i1 6=k

λi1pi1,j

= pk,j +
∑
i1 6=k

∑
i2∈I

λi2pi2,i1pi1,j

= pk,j +
∑
i1 6=k

pk,i1pi1,j +
∑

i1,i2 6=k

λi2pi2,i1pi1,j

...
= pk,j +

∑
i1 6=k

pk,i1pi1,j + · · ·+
∑

i1,...,in−1 6=k

(pk,in−1
pin−1,in−2

· · · pi1,j) +
∑

i1,...,in 6=k

(λinpin,in−1
· · · pi1,j),

for any n ≥ 1. Ignoring the last term shows that for j 6= k,

λj ≥ Pk(X1 = j, Tk ≥ 1) + · · ·+ Pk(Xn = j, Tk ≥ n).

Taking the limit on both sides as n → ∞ gives λj ≥ γkj when j 6= k. In the case j = k, we already know

λk = 1 = γkk .
If p is also recurrent, then λk is an invariant measure (Theorem 6.36), so µ := λ− γk is also an invariant

measure, and we have already shown that µ ≥ 0 and µk = 0. For any given i ∈ I there exists n ≥ 0 such
that pni,k > 0. Then,

0 = µk =
∑
j∈I

µjp
n
j,k ≥ µipni,k,

which implies µi = 0.

Definition 6.38. Let mi := Ei[Ti] be the expected return time. We call a recurrent state i positive
recurrent if mi <∞, and we call all other recurrent states null recurrent.

Theorem 6.39. If p is irreducible, then the following are equivalent.

(i) Every state is positive recurrent.

(ii) Some state is positive recurrent.

(iii) p has an invariant distribution π.

If these statements hold, then πi = 1/mi for all i ∈ I, and π is unique and strictly positive.

Proof. (i) =⇒ (ii) is clear.
(ii) =⇒ (iii). If i ∈ I is positive recurrent, then p is recurrent (Theorem 6.26) and γi is an invariant

measure (Theorem 6.36). Since

∑
j∈I

γij =
∑
j∈I

Ei

[
Ti−1∑
n=0

1{Xn=j}

]
= Ei[Ti] = mi <∞,

we see that πj := γij/mi is an invariant distribution.
(iii) =⇒ (i). Fix any k ∈ I. Because p is irreducible, there exists n ≥ 0 such that πk =

∑
i∈I πip

n
i,k > 0.

If we let λi := πi/πk, then λ is an invariant measure with λk = 1. By Theorem 6.37, λ ≥ γk, so

mk =
∑
i∈I

γki ≤
∑
i∈I

πi
πk

=
1

πk
<∞,

showing that k is positive recurrent.
If we know that all three statements hold, then we know p is recurrent, so Theorem 6.37 implies λ = γk.

Replacing the analogous inequalities in the proof of “(iii) =⇒ (i)” with equalities gives 0 < πk = 1/mk.
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Corollary 6.40. If p is irreducible and I is finite, then p has a unique invariant distribution π that is strictly
positive. Moreover, all states are positive recurrent.

Proof. Since I is a finite closed communicating class, it is recurrent (Theorem 6.28), so (γki )i∈I is an invariant
finite measure (Theorem 6.36). Normalizing by

∑
i∈I γ

k
i gives an invariant distribution.

Example 6.41 (Symmetric one-dimensional random walk). We use the setup in Example 6.30 with p = 1/2.
The transition matrix is irreducible and recurrent. The measure πi = 1 for all i ∈ I is an invariant measure.
An invariant distribution would have to be a multiple of π (consequence of Theorem 6.37), but

∑
i∈I πi =∞,

so there exists no invariant distribution, and thus every state is null recurrent.

6.9 Convergence to equilibrium

Example 6.42. Let I have two states and let

p :=

[
0 1
1 0

]
.

Then p2n would be the identity and p2n+1 = p for all n. Clearly π :=
[
1/2 1/2

]
is an invariant distribution

with respect to p. However, pni,j does not converge as n→∞ for any i, j ∈ I.

It turns out that the periodicity of the above example is the only issue preventing convergence of pn.

Definition 6.43. A state i ∈ I is aperiodic if pni,i > 0 for all sufficiently large n.

Lemma 6.44. Let p be an irreducible transition matrix and i ∈ I an aperiodic state. Then for any j, k ∈ I,
pnj,k > 0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. There exist m, ` ≥ 0 such that pmj,i and pni,k are strictly positive. Then pm+n+`
j,k ≥ pmj,ip

n
i,ip

`
i,k > 0 for

all sufficiently large n. Taking j = k shows that j is aperiodic.

Theorem 6.45 (Convergence to equilibrium). Let π be an invariant distribution of an irreducible aperiodic
transition matrix p. Let λ be an initial distribution and let (Xn)n≥0 be Markov(λ, p). Then

P (Xn = j)→ πj

as n→∞. In particular,
pni,j → πj

as n→∞.

Proof. Let (Yn)n≥0 be Markov(π, p) and independent of (Xn)n≥0. Fix b ∈ I and let

T := inf{n ≥ 0 : Xn = Yn = b}.

We first show P (T <∞) = 1. To do this, we show that Wn := (Xn, Yn) is a Markov chain on I × I with
transition matrix

p̂(i,k),(j,`) := pi,jpk,`

and initial distribution
µ(i, k) := λiπk.

Since (Xn)n≥0 and (Yn)n≥0 are independent and since p is aperiodic for all states in I, we have for all
i, j, k, ` ∈ I

p̂n(i,k),(j,`) = pni,jp
n
k,` > 0

for all sufficiently large n, implying that p̂ is irreducible. Since p̂ has the invariant distribution

π̂(i,k) := πiπk,

Theorem 6.39 implies that p̂ is positive recurrent, i.e., P (T <∞) = 1.
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Next we use a technique called coupling. We define the process

Zn :=

{
Xn n < T,

Yn n ≥ T.

By the strong Markov property (Theorem 6.20), we see that (Zn)n≥0 is Markov(λ, p).
To conclude, note that

P (Zn = j) = P (Xn = j, n < T ) + P (Yn = j, n ≥ T ),

so

|P (Xn = j)− πj | = |P (Zn = j)− P (Yn = j)|
= |P (Xn = j, n < T )− P (Yn = j, n < T )|
≤ P (n < T )

→ 0

as n→∞. [The first equality holds because (Xn)n≥0 and (Zn)n≥0 follow the same distribution, and because
π is an invariant distribution for p and is the initial distribution for (Yn)n≥0. The last inequality is simply
|P (A ∩B)− P (A ∩ C)| ≤ max(P (A ∩B), P (A ∩ C)) ≤ P (A).]

6.10 Ergodic theorem

The ergodic theorem for Markov chains can be seen as a generalization of the strong law of large numbers.

Theorem 6.46 (Ergodic theorem). Let (Xn)n≥0 be Markov(λ, p), with p irreducible, and let Vi(n) :=∑n−1
k=0 1{Xk=i}.

a)
Vi(n)

n
→ 1

mi

almost surely as n→∞. [This statement is still valid if mi =∞, in which case the point of convergence
is 0.]

b) If p is also positive recurrent and π is an invariant distribution, then

1

n

n−1∑
k=0

f(Xk)→
∑
i∈I

πif(i)

almost surely as n→∞, for any bounded function f : I → R.

Proof. If p is transient, then Vi :=
∑
n≥0 1{Xn=i} is finite almost surely and mi =∞, so

Vi(n)

n
≤ Vi

n
→ 0 =

1

mi

proves a) in this case.
Let p be recurrent and fix a state i. Then P (Ti < ∞) = 1 (Theorem 6.25), and (XTi+n)n≥0 is

Markov(δi, p) and is independent of X0, X1, . . . , XTi by the strong Markov property (Theorem 6.20). The
long-run proportion limn→∞ Vi(n)/n of time spent in i is the same for (XTi+n)n≥0 and (Xn)n≥0, so we may
assume λ = δi.

Let Ski be as defined in Definition 6.22. The nonnegative random variables S1
i , S

2
i , . . . are i.i.d. (Lemma 6.23)

and Ei[S
k
i ] = mi for all k. We have

S1
i + · · ·+ S

Vi(n)−1
i = T

Vi(n)−1
i ≤ n− 1
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because the left-hand side is the time of the last visit to i before n. Similarly,

S1
i + · · ·+ S

Vi(n)
i = T

Vi(n)
i ≥ n

because the left-hand side is the time of the first visit to i after n − 1. [Note that Vi(n) counts the “visit”
to i at time 0, while Tni does not.] Thus,

S1
i + · · ·+ S

Vi(n)−1
i

Vi(n)
≤ n

Vi(n)
≤ S1

i + · · ·+ S
Vi(n)
i

Vi(n)
.

By the strong law of large numbers (Theorem 5.53),

S1
i + · · ·+ Sni

n
→ mi

almost surely as n→∞. Because p is recurrent, Vi(n)→∞ almost surely as n→∞. Thus our upper and
lower bound on n/Vi(n) give

n

Vi(n)
→ mi

almost surely as n→∞. Rearranging proves a).
Suppose (Xn)n≥0 has an invariant distribution (πi)i∈I , and let f : I → R be a bounded function. Without

loss of generality we may assume |f | ≤ 1. For any J ⊂ I, we have∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)−
∑
i∈I

πif(i)

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈I

(
Vi(n)

n
− πi

)
f(i)

∣∣∣∣∣
≤
∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+
∑
i/∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣
≤
∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+
∑
i/∈J

(
Vi(n)

n
+ πi

)

=
∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+

(
1−

∑
i∈J

Vi(n)

n

)
+
∑
i/∈J

πi
∑
i∈I

Vi(n) = n

=
∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+
∑
i∈J

(
πi −

Vi(n)

n

)
+ 2

∑
i/∈J

πi
∑
i∈I

πi = 1

≤ 2
∑
i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣+ 2
∑
i/∈J

πi.

By part a), Vi(n)/n→ πi almost surely as n→∞ for all i. Given ε > 0, choose J finite so that
∑
i/∈J πi < ε/4.

Because J is finite, for almost all ω ∈ Ω we can choose an integer N(ω) large enough so that for n ≥ N(ω)
we have ∑

i∈J

∣∣∣∣Vi(n)

n
− πi

∣∣∣∣ < ε/4.

Then for n ≥ N(ω) we have ∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)−
∑
i∈I

πif(i)

∣∣∣∣∣ < ε,

proving b).
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7 Poisson processes

Let S1, S2, . . . be i.i.d. Expon(λ). Let Tn := S1 + S2 + · · · + Sn for each n ≥ 1. The Poisson process
with jump intensity λ is defined as (Nt)t∈R, where

Nt :=
∑
n≥1

1{Tn≤t}.

• Nt ∼ Poisson(λt).

• Tn ∼ Gamma(n, λ) (density function λe−λt(λt)n−1/(n− 1)!).

• (Nt)t∈R has stationary increments (Nt −Ns depends only on t− s) and independent increments.

• (Nt − λt)t∈R is a martingale.
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