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The following is a collection of notes for a course on measure-theoretic probability taught by Prof. Patrick

Cheridito. Most of the material is drawn from [1] and [2]. Some proofs have been omitted because they are
homework questions.
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1 Finite probability spaces
Definition 1.1.

e A finite probability space is a finite set Q = {wy,...,wx} with numbers p;1,...,py € [0,1] such
that >~ p, = 1. We will only consider finite probability spaces in this section.

An event is a subset A of Q.

The set of all events is denoted 22.

The probability measure on © corresponding to pi,...,px is the map P : 2 — [0, 1] defined by
P(A) = En:wneA Pn-
e A [real] random variable is a function X : Q — R.

e A collection of events F is an algebra if

1) Qe F,
2) AABe F = AUBE€ F, and
3) Ac F = A°e F.

A random variable X is F-measurable if {X = z} € F for any € R. Here, {X = z} is shorthand
for {w e Q: X(w) = x}.

Example 1.2.
o If 7 := {2, 0}, then the F-measurable random variables are the constants.
o If 7 := 2% then every random variable is F-measurable.

Example 1.3. Consider the act of making two coin tosses, and let Q := {hh, ht,th,tt}. Algebras can
represent various states of knowledge. For instance, the algebra F; := {@, {hh, ht}, {th,tt}, Q} represents
[in some sense] the knowledge of one coin flip, while 7, := 2 refines this algebra and represents the knowledge
of both coin flips. This will be made clearer when we introduce the concept of atoms.

We list some properties of P.

e P()=0.

o P() =1.

e P(AUB)=P(A)+ P(B)— P(ANB).
o P(A°) =1— P(A).

Definition 1.4.
e Wesay X =Y as. (equal almost surely) if P(X =Y) = 1.

o Wesay X 2V (equal in distribution) if P(X =) = P(Y = z) for all z € R.

Note that almost sure equality implies equality in distribution. The following example shows that the
converse is false.

Example 1.5. Let Q := {hh, ht,th, hh} as before, and let X (hh) = 2, X (ht) = X (th) = 0, and X (tt) = —2.
IfY:= —X, then X 2V but P(X =Y) = 1/2.
Definition 1.6. The expected value of a random variable X is

N

E[X] = Z pTLX(w’IL)'

n=1



Note that a random variable can be interpreted to be the element (X (w1),..., X (wn))T € R™.
The expectation has the following properties.

e Linearity. E[aX + Y] = a E[X] + E[Y] for any ¢ € R and random variables X,Y".
e Positivity. If X > 0 a.s., then E[X] > 0.
e Continuity. If X;(w) — X (w) a.s., then E[X}] — E[X].

One might remark that formalisms like “almost surely” are meaningless in the discrete case, but they
become relevant when we transition to the continuous case; consider taking the limit of the model of NV coin
flips as N — oo.

Definition 1.7. The covariance of two random variables X,Y is defined by
Cov(X,Y) :=E[(X — E[X])(Y — E[Y])] = E[XY] — E[X]E[Y].
The variance of a random variable is
Var(X) := Cov(X, X) = E[(X — E[X]))?] = E[X?] - E[X]%.
The covariance and variance satisfy these properties.
e Symmetry. Cov(X,Y) = Cov(Y, X).
e Bilinearity. Cov(aX +Y,Z) = aCov(X, Z) + Cov(Y, Z).

Shift invariance. Cov(X +a,Y) = Cov(X,Y).

Var(X) > 0.

Var(X) =0 = X =E[X] as.

Cauchy-Schwarz. |Cov(X,Y)| < /Var(X) Var(Y), with equality if and only if X —E[X] is a multiple
of Y — E[Y] as.

The correlation is a scale-invariant version of covariance, defined to be

xv) {% if Var(X) Var(Y) > 0
p(X,)Y) = :

0 otherwise
By Cauchy-Schwarz, the —1 < p(X,Y) < 1.

Definition 1.8. Events Ay, ..., Ay are independent if for any m € {1,...,. M} and 1 < j; < jo < --- <

Im < M, we have
m m
P (ﬂ Ajk) = HP(Ajk:)'
k=1 k=1

Random variables X7,..., X are independent if for any x1,...,25 € R, the events {X; = x1}, ...,
{Xnm = zp} are independent.

Proposition 1.9. For random variables X1, ..., Xy on a finite probability space, the following are equiva-
lent.

(i) X1,...,Xn are independent.

(i) For any f1,...,fm : R =R,

E

M M
H fm(XM)] = H E[fm(Xm)].

m=1 m=1



(iii) For any u € RM and letting X = (X1,...,Xum),

Elexp(iu’ )] = H Elexp(itm Xom)]-

m=1

Corollary 1.10. If Xy,..., Xy are independent random variables, then g1(X1),...,g9m (X)) are indepen-
dent for any g1,...,9m : R — R.
Corollary 1.11. If X and Y are independent, then Cov(X,Y) = 0. However, the converse does not hold.

Definition 1.12. A probability measure P is absolutely continuous with respect to another probability
measure @ if Q(A) = 0 implies P(A) = 0 for any subset A of 2. We denote this P < Q.
We say P is equivalent to Q if P < @ and @ < P. We denote this P ~ Q.

Definition 1.13. The indicator function of a set A is a function defined by

wer= g eh

Lemma 1.14. Let Z be a random variable that is nonnegative almost surely and satisfies Ep[Z] = 1. Then
Q(A) :==Ep[14Z]
is a probability measure with elementary probabilities g, := pnZ(wy). Moreover, Q < P.

Proof. Tt is clear that g, := Q({wn}) = Ep[1w,}Z] = pnZ(wn) and that g, > 0 whenever p, > 0. Moreover,
Q) = ij:lan(wn) = Ep[Z] = 1. This shows that g, < 1 whenever p, > 0. O

Theorem 1.15 (Elementary version of the Radon-Nikodym derivative). Let P and Q) be probability measures
on Q, with Q < P. Then there exists a random variable Z that is monnegative almost surely satisfying
Ep[Z] =1 and Q(A) = Ep[L4Z] for any subset A of Q.

Proof. Let Z(wy,) := ¢n/pn whenever p, > 0. [The values of Z(w,) when p, = 0 are irrelevant.] O
In the following we assume pq,...,py > 0.

Definition 1.16. An atom A of an algebra F is a set in F \ {&} such that @ and A are the only subsets
of A in F. In other words, A is “indivisible” in F.

Note that for every algebra F there exist finitely many atoms Ay, ..., Aps such that Q = U%Zl A, and
A;NA; =@ when i # j. F consists of @ and all unions of the A,,.

Definition 1.17. Let X : Q@ — R be a random variable taking the values z1,...,2); € R, M < N. The
algebra generated by X, denoted a(X), is the algebra with atoms {X = z1},...,{X = z,,}. It is the
coarsest algebra on 2 with respect to which X is measurable.

This is how algebras encode knowledge or information. In a(X), knowledge of the value of X (w) deter-
mines the unique atom of the algebra «(X) that contains w. In finer algebras, it is not always possible to
identify the atom that contains w by only observing X (w).

Definition 1.18.
e Let A, B € 2% and P(B) > 0. The conditional probability of A given B is defined by

P(ANB)

PA|B) = =55



Let X be a random variable, and let F be an algebra with atoms A;,...,Ay;. The conditional
expectation of X with respect to F is the random variable defined by

1
P(Am)

E[X | Fl(w) == Z X(wj)p; where A,, is the [unique] atom containing w.

wjEAM

Note that E[X | F] is constant on each atom and is therefore F-measurable.
Let X and Y be random variables. We define

E[X |Y]:=E[X | a(Y)].

Let A € 2 and let F be an algebra. We define
P(A| F):=E[14 | F].

o If Ac 2% and let F be an algebra. We define
PA|Y):=E[14|Y].
Proposition 1.19. Let Q = {w1,...,wn} be a finite probability space with p, = Plw,] > 0 for alln, X a
random variable on Q and F an algebra of subsets of Q with atoms Ay, ..., An.

a) E[X | F] is F-measurable.

[ ]
b) E[X | F] = E[X] if F ={2,Q}.
¢) E[X | F] = X if X is F-measurable.
d) BIX | F]>0if X >0.
e) EIXY +Z | F]=XE[Y | F]+E[Z | F] if X is F-measurable.
f) E[E[X | F]| G] = E[X | G] for every sub-algebra G of F.
g) E[X | F] = E[X] if X is independent of F.
h) E[X | F] is the unique minimizer of the quadratic optimization problem

minimize E[(X —Y)?)] over all F-measurable random variables Y .

That is, E[X | F]| is the projection of X to the space of F-measurable random variables with respect to
the norm || X ||lo = E[X?]'/2, or in other words, E[X | F] is the best least-squares estimate of X given the
information contained in F.
Definition 1.20. Let (2, P) and (€', P) be [finite] probability spaces. Then (2 x £, P® P’) is a probability
space, where Q x ' := {(w,w’) : w € Q,w’ € O} is the Cartesian product and where

(P& P)((w,) i= Pw)P'(W).

Note that this construction gives “independence” to each component of the space and preserves the
probabilities when embedding from the original space. More explicitly, let A C Q, B C QX Q= R,
and Y : Q' — R. The random events A := A x Q and B := Q x B are independent in (€2 x Q' P®P).
Moreover, (P ® P')(A) = P(A) and (P ® P')(B) = P'(B). The random variables X ((w,w’)) := X (w) and
Y ((w,w')) := Y (w') are independent on (P @ P')(A) = P(A). Moreover, X 2XandY LY.

Example 1.21. Let Q := {0,1}, P(0) := ¢, P(1) := p, and p+ ¢ = 1. Then the random variable defined by
£(0) := 0 and &(1) :=1 is called a Bernoulli random variable with parameter p.

Example 1.22. We consider the product of the previous probability space with itself n times. Let 2 :=
{0,1}", and let P((ay,...,ay)) := p>i%q'=2i % If we define &((ay,...,an)) = a;, then &1,...,&, are
independent Bernoulli random variables with parameter p.

Example 1.23. Let S := Y7 | &, where & are as defined in the previous example. Then P(S = k) =
(Z)pkq"_k fork=0,...,n. Sis called a binomial random variable with parameters n and p. Its expectation

is B[S] = 32, E[&i] = np.



2 Countable probability spaces

Definition 2.1. A countable probability space consists of a countable set = {wy,wa, ..., } with numbers
P1,D2,-.. > 0 such that > ., p, = 1. The probability measure P, events, and random variables can be
defined analogously from the case of finite probability spaces.

Example 2.2 (Poisson distribution). Let Q@ = {0,1,...,}, and let P(n) = e"\%, where A > 0. The random
variable defined by X (n) := n is said to follow the Poisson distribution with parameter A.

Example 2.3 (Geometric distribution). Let Q@ = {1,2,...}, and let P(n) = (1 — p)" !'p. The random
variable X (n) := n is said to follow the geometric distribution with parameter p.

3 General probability spaces

3.1 o-algebras

Definition 3.1. A system F of subsets of a nonempty set ) is a o-algebra if it is an algebra (see Defini-
tion 1.1) satisfying J,,~, An € F for every sequence A;, As,... € F.

Consequently, the intersection of a sequence of sets in F is also in F.

Definition 3.2. A pair (2, F) of a nonempty set {2 and an associated o-algebra F is called a measurable
space.

Definition 3.3. A measure on a measurable space is a mapping p : F — [0, 0o] (infinity is included) such
that (&) = 0 and

1 U A, | = Z u(Ay), for any sequence of [pairwise] disjoint sets Ay, As,... € F.
n>1 n>1

This last property is called countable additivity or c-additivity.

Definition 3.4. Let x4 be a measure on . It is probability measure if ;(2) = 1. It is a finite measure
if u(Q) < oo. It is o-finite if there exist a sequence Qq,{s,... € F such that u(£,) < oo for all n and

Upst O = €.

Definition 3.5. A measure space (), F, 1) is a measurable space with a measure. It is complete if for
any B € F such that p(B) = 0, any subset A C B satisfies A € F and pu(A) = 0.

Every measure space (2, F, i) can be completed by defining the o-algebra
F:={AUuC:Ce€F,ACB,B¢cF,uB)=0}
with the measure (AU C) := u(C).

Definition 3.6. We call a set function u : F — [0, 00] on an algebra F of subsets of 2 a finitely additive
measure if (@) =0 and p(AU B) = u(A) + u(B) for disjoint A, B € F.

Theorem 3.7. Let u be a finitely-additive measure on an algebra (not o-algebra) F of subsets of a set
such that u(2) < oo. Then the following are equivalent.

1) p is o-additive:
Iz U An | = Z p(An)
n>1 n>1

for any sequence of [pairwise] disjoint sets Ay, Aa,... € F such that Un21 A, €F.



2) p is continuous from below:

K U A, | = lim M(An)

n— oo
n>1

for any increasing sequence Ay C Ay C --- of sets in F such that |J,,~; An € F.

3) p is continuous from above:
H ﬂ Ap | = lim u(Ay)

for any decreasing sequence Ay D Ag D -+ of sets in F such that ﬂn21 A, eF.

4) w is continuous at & :
L p(An) =0

for any decreasing sequence Ay O Ag D --- of sets in F such that ﬂn21 A, =0.
Definition 3.8. A monotone class M is a collection of subsets of a set {2 such that
1) Un21 A, € M for any increasing sequence A; C As C --- of sets A,, € M, and
2) ﬂn21 A, € M for any decreasing sequence A1 D Ay D --- of sets A, € M.

Note that any o-algebra is also a monotone class.
Definition 3.9. A Dynkin system D is a collection of subsets of a set {2 such that
1) QeD.
2) Un21 A,, € D for every sequence of pairwise disjoint sets Ay, As,... in D.
3) A¢ € D for every A € D.

Note that any o-algebra is also a Dynkin system.
Lemma 3.10. The following conditions are equivalent to the above three conditions.
1’) QeD.
2’) B\ A €D forall A,B € D such that A C B.
3’) Un21 A, € D for every increasing sequence of sets Ay C Ay C --- in D.

Lemma 3.11. The arbitrary [not necessarily countable] intersection of o-algebras is also a o-algebra. The
same statement holds after replacing “o-algebra” with either “Dynkin systems” or with “monotone classes.”

Definition 3.12. Let £ be a nonempty collection of subsets of . Then (&) denotes the intersection
of all g-algebras containing &, and is called the o-agebra generated by £. It is the “smallest” o-algebra
containing &, in that any o-algebra containing & must also contain o(€). We let §(€) and p(€) denote the
Dynkin system generated by £ and the monotone class generated by £ respectively, which are defined
analogously.

Lemma 3.13. An algebra A is a o-algebra if and only if it is a monotone class.

Proof. All g-algebras are monotone classes, so we need only show the other direction. Let A be an algebra
that is a monotone class. We only need to show that A is closed under countable unions. Let A;, As,... be
a sequence of subsets in A. The sets B,, := J,_, Ay are in A because A is an algebra. Then, using the fact
that B,, form an increasing sequence, we have

UJA4n={JB.cA

n>1 n>1



The following principle is a tautology, but is the key technique that appears multiple times in the proof
of the monotone class theorem.

Lemma 3.14 (Principle of good sets). The statement “all elements of H satisfy property P” is equivalent
to “H C {a : a satisfies P}.”

Theorem 3.15 (Monotone class theorem). If A is an algebra, then
H(A) = o (A).

Proof. Because o-algebras are monotone classes, we have p(A) C o(A). To show the reverse inclusion, note
that by Lemma 3.13, it suffices to show that u(A) is an algebra, since then u(A) would be a o-algebra
containing A, and thus must contain o(.A) by definition.

1) Qe AC u(A) because A is an algebra.
2) Fix S € pu(A). We would like to show that S¢ € u(A). It suffices to show that

pw(A) Cc B:={SCQ:5€cpu(A)}.
We claim B is a monotone class containing A as a subset.

e Because A is an algebra, S € A implies S¢ € A, so A C B.

e We now show B is a monotone class. Suppose Aj, As, ... is an increasing sequence of sets in B. To
show that J,,~; 4. is also in B, note that because A?, € p(A) (by definition of B) and because p(.A)
is a monotone class, we know

U4 ] =4

n>1 n>1
is in p(A). A similar argument shows why ﬂnzl A,isin Bif Ay DAy D -+ in B.

By definition of u(A) being the “smallest” monotone class containing A, we must have u(A) C B as
desired.

3) Fix S € u(A) we would like to show that for any T € p(A), we have SUT € p(A). Define
Ng:={TCcQ:5UT € u(A)}.
We would like to show p(A) C Ng. We claim Ng is a monotone class containing A.

e We show Ng is a monotone class. If Ay, As,... is an increasing sequence of sets in Ng, then
(SUA,)n>1 is an increasing sequence of sets in p(A). Since p1(.A) is a monotone class, | J,,~;(SUA,) =
SUU,,»1 An is in p(A), implying J,,~; Ay, is in Ng. A similar argument shows that the intersection
of a decreasing sequence of sets in Ng is also in Ng.

e We show A C Ng. This will be implied if we show the stronger statement that UUV € u(A) for any
UVeA FixUeAandlet Ny :={V CQ:UUV € u(A)}.! We would like to show u(A) C Ny .
We claim Ny is a monotone class containing A.

— A C Ny is clear because A is an algebra.
— Ny is a monotone class by the same argument we used for Ng above.

By the definition of u(A) being the “smallest” monotone class containing A, we have u(A) C Ny,
and thus A C Ny as desired.

By the definition of p(.A) being the “smallest” monotone class containing A, we have u(A) C Ng, proving
that SUT € p(A) for any T € p(A).

IThis is the identical to the definition of Ng, but here U € A, which is in some sense an improvement over S € u(A).



To summarize, we have shown that the monotone class p(A) is an algebra, so by Lemma 3.13, it is a o-algebra
containing A, and thus contains o(.A). O

Lemma 3.16. A Dynkin system D that is closed under finite intersection is a o-algebra.
Proof.

1) © € D because D is a Dynkin system.

2) If A € D, then A¢ € D because D is a Dynkin system.

3) Let Ay, Ag, ... be a sequence of sets in D. Then AS € D for all n (definition of Dynkin system) and the
sets By, := A, N ﬂZ;ll Af are in D as well (closure under finite intersection). Since the B,, are disjoint,

we have
U4.=B.eD.
n>1 n>1

O

The following theorem is a version of the monotone class theorem for Dynkin systems, and the proof is
identical in spirit to the previous one.

Theorem 3.17 (Variant of the monotone class theorem). If £ is a nonempty collection of subsets of Q0 that
is closed under finite intersection, then

5(E) = o (£).

Proof. Because all g-algebras are Dynkin systems, we have §(€) C o(€) because §(&) is contained in any
Dynkin system containing £. To show the reverse inclusion, note that by Lemma 3.16, it suffices to show
that 6(€) is closed under finite intersection, since then §(€) would be a o-algebra containing &, and thus
must contain o(€) by definition.

Fix A € §(&). We would like to show that AN B € §(&) for any B € 6(€). It suffices to show that

0(E)C Na:={BCQ:ANBe€&)}.
e We claim N4 is a Dynkin system.

1) Q€ Ny because ANQ = A €6(E).

2) Given a sequence Ay, A, ... of disjoint sets in N4, we claim J,,~; A, is also in N4. Indeed, since
(AN A,)n>1 is a sequence of disjoint sets in the Dynkin system 6(&), we have

AnlJ A, ={JAnA4,)eD.

n>1 n>1
3) If B€ N4, then AN B € §(€). Thus,
ANB®=(A°UB)¢=(A°U(ANB))¢ &)
because A° and AN B are disjoint sets in the Dynkin system §(€). So, B¢ € N4 as well.

e We also claim that &€ C N4. This will be implied if we show the stronger statement that UNV € 6(&)
for any UV € €. Fix U € £, and let Ny :={V Cc Q:UNV € §()}. We would like to show
0(€) € Ny. We claim Ny is a Dynkin system containing &.

— & C Ny is clear because £ is closed under finite intersection by assumption.

— Ny is a Dynkin system by the same argument used for N4 above.
Since Ny is a Dynkin system containing &, so by definition §(£) C Ny .

We have shown that N4 is a Dynkin system containing &, so by definition §(£) C Na, i.e., §(&) is closed
under finite intersection. By Lemma 3.16, 6(&) is a o-algebra containing &, so () C §(€) by definition. O



Corollary 3.18. Let P,Q be probability measures on (Q,0(E)) where € is a collection of subsets of Q that
is closed under finite intersection. If P =Q on &, then P =Q on o(€).

Proof. Let D:={A € o(€): P(A) = Q(A)}. By assumption, & C D. Moreover, D is a Dynkin system, due
to the definition of a probability measure. So, 6(€) C D by definition. By Theorem 3.17, §(&) = (&), so
we have o(£) C D, that is, P(A) = Q(A) for any A € o(&). O

Definition 3.19. The Borel o-algebra on a topological space is the o-algebra generated by the collection
of open sets.

Lemma 3.20. The o-algebras on R generated by the following collections are the same: the Borel o-algebra
on R, denoted B(R).

1) The open sets in R.
2) The half-open intervals (a,b] where a < b, a,b € R.
3) The intervals (—oo, z] for x € R.

Proof. Let By, Bs, B3 be the respective o-algebras generated by the three collections. To show containment,
it suffices to show that one o-algebra contains the generators of another. We remark that any open set in R
can be written as the countable union of disjoint open intervals.

® B3 C By because (—o0,z] = ,5,(z —n,z].

e B35 C B3 because (a, b]

(—00,b] N (=00, a]°.

(
e B1 C By because (a,b) = ,5,(a,b—1/n].
(

e 35 C B; because (a,b] ﬂn21(a7b—|— 1/n).

O

Corollary 3.21. A probability measure P on (R, B(R)) is uniquely determined by its cumulative density
Sfunction (cdf) defined by
F(x) = P((—o0, z]).

Proof. Suppose P and @ have the same cdf. Let £ := {(—o0,2] : € R} and note that it is closed under
finite intersection. Since P and @ agree on &, they also agree on o(&) by Corollary 3.18. To conclude, note
that Lemma 3.20 implies o(€) = B(R). O

Proposition 3.22. The cdf F' of a probability measure on (R, B(R)) satisfies the following properties.
1) F is nondecreasing.

2) F is right continuous, that is,

lim F =F .
Jm (z) (o)

3)
lim F(z) =0 and lim F(z)=1.
xr——00 T—r00
Proof. The first and third properties are clear from the definition of a probability measure. For the second,
suppose we have a sequence (2,),>1 that converges monotonically to = from above. Then

lim F(z,)— F(z) = lim P((—o0,z,]) — P((—o0,2]) = lim P((z,z,]) =0.

n—oo n—oo n—oo



3.2 Measurable functions and random variables
Definition 3.23. A function f: (Q,F) — (E, ) is measurable if f~1(A) is in F for any A € €.
Lemma 3.24. Fiz f : Q) — E.

o If & is a o-algebra on E, then o(f) := {f~Y(A) : A € £} is the smallest o-algebra on Q such that
f:(Q,0(f)) = (E,E) is measurable.

o If F is a o-algebra on Q), then (f) := {A C E: f~1(A) € F} is the finest (largest) o-algebra on E
such that f(Q,F) — (E,a(f)) is measurable.

Proof. The fact that o(f) is a o-algebra follows easily because the pre-image transfers the properties of the
o-algebra .

1) o(f) contains Q because Q = f~}(E) and E € €.
2) If B € o(f), then B = f~1(A) for some A € £. Then B¢ = f~1(A°) is also in o(f).

3) If By, Ba,... is a sequence of sets in o(f), then there exists a sequence of sets A1, Ag, ... in € such that
B, = f~1(4,) for all n. Then

UBi=UFrAn=r"1U A4

n>1 n>1 n>1

is in o(f).

By definition of measurability, any o-algebra for Q that makes f measurable must contain o(f).
Verifying that o(f) is a o-algebra is also simple.

1) &(f) contains E because f~1(FE) = Q.
2) If A is contained in &(f), then f~!(A) € F. Thus, A€ is also contained, since f~1(A¢) = (f~1(4))¢ € F.

3) Let Ay, As, ... be a sequence of sets in &(f), which implies the sets f~1(A4,) form a sequence of sets in
F. Thus,

U A ] =U e
n>1 n>1
is contained in o' (f).
By definition of measurability, any o-algebra for E that makes f measurable must be contained in (f). O

Lemma 3.25. Let f : (U, F) — (E,€) and g : (E, &) — (G, G) both be measurable. Then go f is measurable.

Lemma 3.26. Let f : Q — E be a function and let € be a collection of subsets of E (not necessarily an
algebra). Then
o({fH(A):Ae &) ={f1(4):Aca(E)})

Proof. Let F (and G) be the left-hand (and right-hand) side of the above equality. To show F C G, it suffices
to show that G is a o-algebra containing the generator {f~1(A) : A € £} of F. The containment is clear
because £ C o(£), and the fact that G is a o-algebra follows from the proof of Lemma 3.24.

To show the reverse containment let H := {A C E: f~}(A) € F}. We claim it is a o-algebra containing
£. Indeed, the proof of Lemma 3.24 shows that it is a o-algebra, and the containment of £ follows from the
definition of F. Thus, H D o(£), which in turn shows G C F. O

Definition 3.27. A random variable is a measurable function X : (Q, F) — (R, B(R)).

Corollary 3.28. A function X : (,F) — (R, B(R)) is measurable if {X <z} € F for all z € R.
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Proof. Note that {X < 2} = X !((—o00,2]). Let £ := {(—o0,z] : € R}, and recall that o(€) = B(R) by
Lemma 3.20. By assumption, o(X~*(4) : A € £}) C F, but by Lemma 3.26, this implies {f~1(A4) : A €
B(R)} C F,ie., X is measurable. O

We remark that we can replace the “<” of {X < z} in the above corollary with any one of <, >, or >,
and the result will still hold. These correspond to other collections that generate the Borel o-algebra on R.

Proposition 3.29. Let X,Y : (O, F) — (R,B(R)) be random variables. Then X +Y, X =Y, and XY are
random variables. If Y (w) # 0 for all w € Q, then X/Y is a random variable as well.

Proof. To show X + Y is measurable, note that
{X+Y >a} = U({X>q}ﬂ{Y>x—q}.
q€Q
The other cases can be shown similarly, although it is a bit tedious. O

Definition 3.30. An extended random variable is a function X (€2, F) — R := R U {00} such that
{X <z} € F for any z € R.

Proposition 3.31. If (X,,)n>1 s a sequence of extended random variables on (Q,F), then sup,, X, and
inf,, X,, are extended random variables.

Proof. This follows if we note {sup,, X, <} =(,5;{Xn < 2} and {inf, X;, > 2} = > {Xn > 2}. O

Lemma 3.32. If (X,,)n>1 is a monotonically increasing or decreasing sequence of extended random variables,
then their limit X is an extended random variable.

Proof. If the sequence is increasing, then note that {X <z} = (1, {X, < x}. If the sequence is decreasing,
then note that {X > 2} =, > {X, > z}. B O

Proposition 3.33. If (X,,)n>1 is a sequence of extended random wvariables, then limsup, _,. X, and
liminf, . X,, are extended random variables.

Proof. Note that limsup,,_,., X, = lim, oo supys, Xi and liminf, . X,, = lim,_,o infz>, Xj;. Since
(supg>p Xk)n>1 and (infg>y, Xj)p>1 are monotonic sequences of extended random variables (Proposition 3.31),
their limits are also extended random variables by Lemma 3.32. [Alternatively, we could have noted that
limsup,,_, o X = inf,>1 supys,, Xi and liminf,,_, . X,, = sup,,>; infr>, Xk.] O

Corollary 3.34. If (X,,)n>1 is a sequence of extended random variables such that lim,_,. X, (w) = X (w)
for all w € Q, then X is an extended random variable.

3.3 Extension theorems

Definition 3.35. A collection S of subsets of a nonempty set 2 is a semiring if

1) o es,

2) ANBeSif A BeS, and

3) for any A,B € S, there exist finitely many pairwise disjoint sets Cy,...,C, € S such that A\ B =
CrU---UCGC,.

Definition 3.36. A measure on a semiring S is a function p: S — [0, 00] (includes oo) such that
1) w(@) =0,

2) for any sequence Ay, As,. .. of pairwise disjoint sets in S such that (J,~; An € S, we have

K U An | = ZM(AN)'

n>1 n>1

11



A finitely additive measure is a function u that satisfies the above properties, but with the countable
collection in 2) replaced by a finite collection.

Definition 3.37. A measure p is o-finite if there exists a sequence €2;,(s,... of sets in & such that
1(2,) < oo for all n and Q = {J,,5; Q.

The following lemma is a useful tool to check if the conditions for the Carathéodory Extension Theorem
hold.

Lemma 3.38. Let S be a semiring on Q that contains Q2. A finitely additive measure pp on S such that
w(Q) < oo is o-additive if and only if u(A,) — 0 holds for any decreasing sequence A1 D As D -+ of sets
in S such that (>, An = .

Theorem 3.39 (Carathéodory Extension Theorem). A measure p on a semiring S can be extended to a
measure on o(S). If u is o-finite, then the extension is unique.

Example 3.40. Let S = {(a,b)) "R : —00 < a,b < oo}. (Note that a and b can be infinite. Also, R € S.)
This is a semiring on R. Every nondecreasing right-continuous (gives continuity at &) function F : R — R
induces a o-additive measure pp on S given by pup((a, b)) := F(b) — F(a). [If a,b are infinite, take the limit.]
Then pp has a unique extension to B(R) = o(S).

If F(x) := x, then pp is the Lebesgue measure.

If lim, oo F'(z) = 0 and lim,_, o, F(x) = 1, then up is a probability measure on the real line, and F' is
its cdf.

Example 3.41. The family of hypercubes (a,b] := (a1,b1] X -+ (an, bp] NR™ forms a semiring on R™. Let
F :R™ — [0, 1] satisfy the following.

1) Ay - Da, o, F (1, .., 20) > 0 for all a; < by,...,a, < by,, where the operator A,, ;, maps
F(zy,...,xn) = F(ay, .o 221,00, Tig 1y ooy Tn) — F(1, 000, T21, Gy Tt 1y oo oy Ty)-

[This is the analogue of nondecreasing in higher dimensions and ensures that areas will have have non-
negative measure in the induced measure.]

2) F(z®) = F(x) if ngk) N z; for all ¢ = 1,...,n. [This is the analogue of right-continuity.|
3) F(z) > lasxy — 00,...,T, — 0.
4) F(z) > 0asx1 \(Y1,.--,Tn \(Yn for any yi,...,y, such that y; = —oo for at least one i.

Then P(a,b) = Ag by - Da, b, F(21,...,2,) is a probability measure on S with a unique extension to
BR") = o(S).

An example of such a function F is F(z) := Fy(z1) -+ Fp,(2n), a product of one-dimensional cdfs.

Definition 3.42. If F and F’ are o-algebras on Q and ' respectively, then S := {A; x Ay : A} € F, Ay € F'}
is a semiring on £ x )'. We define their tensor product by

F@F =0(S).

Example 3.43. Let (2, F,P) and (', F', P') be two probability spaces. The probability measure (P ®
P)(A; x Ag) := P(A1)P’(A2) uniquely extends to a measure on F @ F' = o(9).

The definition of tensor product allows us to define the Borel o-algebra on R™, which we denote by
B(R)®"™ or B(R™). We would like to generalize from the finite exponent n to arbitrary exponents.

Definition 3.44. Let I be an arbitrary nonempty set (possibly uncountable); we will use it as an index set.
We define RY := {(w;)ies : w; € R}. Equivalently, we can view the elements of this space as functions rather
than I-tuples, that is, R! := {f : I — R}. For each i € I we let ¢; : R — R be the projection defined by

ai(f) = f(i)-
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The product o-algebra B(R)®! defined to be the smallest o-algebra on R’ such that every projection ¢;
is measurable. That is,
BR) =o({g;'(B):i€1,B e B(R)}).

[This is analogous to the construction of the so-called product topology, which is the coarsest topology for
which the projections are continuous.]

Definition 3.45. Let I be a nonempty set. Given any finite tuple (iy,...,i,) with entries in I, let Pt
be a probability measure on (R™, B(R™)). The family of all such measures is consistent if the following
hold.

1) Permutation invariance. For any finite I-tuple (i1, ...,4,), any permutation m € S,,, and any subset
Ay, ..., A, € B(R), we have

Pil,...,in(Al X An) — Pi,r(l),u.,i,,(n) (A7r(1) NETRY: A'/r(n))

2) Projection invariance. For any I-tuple (i, ...,4,) with n > 2 and any subsets A4;,...,4,-1 € B(R),
we have o o
Pitres ln_l(Alx...xAn_l):P“ """ Z"(Al ><~-~An_1><R)-

Theorem 3.46 (Kolmogorov extension theorem). Let {P% -t : finite I-tuples (iy,...,i,)} be a consistent
family of probability measures on (R, B(R)). Then there exists a unique probability measure P on (R, B(R)®?)
such that for any finite I-tuple (i1,...,i,) and subset B € B(R)®", the probability of the cylinder defined by
B coincides with the marginal P+, Explicitly,

PHweR!: (wi,,...,w;,) € B}) = Plvin(B).

This theorem is relevant in the study of stochastic processes: I represents the time space, and the i,
represent fixed times.

Corollary 3.47. Let Py, Ps,... be a sequence of probability measures on (R, B(R)), (R?, B(R)®?), and so
on, such that P,11(B x R) = P,(B) for any B € B(R). Then there exists a unique probability measure P
on (RN B(R)®N) such that

P({w e RY: (w1,...,wp,) € B}) = P,(B)

for any n > 1 and any subset B € B(R)®".

Proof. Tt suffices to form the relevant consistent family and apply Theorem 3.46. Given an I-tuple (i1, ..., iy),

we define o '
proes Z"(Ail X e XAin) = Pi*({wER’ :(wil,...,win) EAil X e XAZ'H})7

where ¢* := max{i1,...,i,} and A;,,..., 4; € B(R). This family is permutation invariant; the projection
invariance follows as a result of the assumption P,+1(B x R) = P, (B). O

Note that to specify a measure on (RY, B(R)®N), it is not sufficient to specify the one-dimensional distri-
butions for each component; there needs to be a specification of how the components interact. For example,
specifying the one-dimensional distributions and also specifying that the components are independent would
suffice.

Example 3.48 (Sequence of coin flips). There exists a unique probability measure P on (RY, B(R)®N) such
that
PlweRYN 1wy =j1,...,wp =jn}) =277

for any n € N and any (j1,...,jn) € {0,1}"™. Then the random variables &,(w) := w,, are independent
Bernoulli random variables. Note that identifying the &, with coefficients of a dyadic expansion >~ ; &,27"
shows that this models the uniform distribution on [0, 1].
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4 The Lebesgue integral and expectation

4.1 The Lebesgue integral and convergence theorems

The Riemann integral is defined for functions with countably many points of discontinuity, but cannot
handle functions like 1gno,1;-

Definition 4.1. A simple function on a measurable space (€2, F) is of the form
n
f= Z aila,, (1)
i=1

for a; e R, A; € F, and n € N.
Note that the form (1) is not necessarily unique for a given function f.
Definition 4.2. Let (2, F, i) be a measure space and let f : (2, F) — (R, B(R)) be a measurable function.

1) If f=>"",a;14, with a; € Ry (nonnegative), A; € F, and n € N, then we define

[ ran = a4,
=1

which will take a value in [0, 00]. [Note that this definition is independent of the choice of representation

(1) for f.]
Jran= s [odn

2) If f is nonnegative, then we define
0<g<f

which will take a value in [0, co].

3) For any other [measurable| f, we define f*:= fVv0and f~ := (—f) V0. These two auxiliary functions
are measurable and nonnegative. If either [ f*du < co or [ f~ dp < co, then we define

/fdu:=/f+du—/f_du7

which will take a value in [—o0, 00].
Definition 4.3.
o If [fT <ocor [f~ < oo, then we say the integral of f exists.
e We say f is integrable if any of the following equivalent conditions hold.
o [fT <ocoand [ f~ <o0
o [lfl < oo
o If Ae F, wedefine [, fdu:= [1afdpu.
Proposition 4.4. If the integrals of f and g exist, then the following hold.
o uf#9)=0 = [fdu= [gdpn.
o u(f<g)=0 = [fdu> [gdu.
o [Ifldu=0 = u(f#0)=0.
Proposition 4.5. Let f and g be simple integrable functions. Then [ f+g= [ f+ [g.
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Lemma 4.6. Let f be a measurable nonnegative function. Then there exists a sequence of monnegative
simple measurable functions f, that are pointwise increasing to f.

Proof. Let
n2™—1

1
i=1

O

Lemma 4.7. Let g be a simple function and f a measurable function such that 0 < g < f. If (gn)n>1 is @
sequence of simple nonnegative functions increasing pointwise to f, then

lim gnduz/gdu-

n—oo
Proof. Let x1,...,2m € Ry \ {0} be the values g takes, excluding zero. Then g = > " | Tilgg—y,y-

Case 1. Suppose (g = x;) = oo for some i. Let A, := {g = z;} N {gn > x;/2}. Then the A, form an
increasing sequence of sets whose union is {g = x;}. By the o-additivity of u, applying Theorem 3.7
shows that u(A,) — u(g = ;) = 00 as n — oo. Then,

z;
/gn dp > gu(An) — 00

as n — 0o, proving the lemma.

Case 2. Otherwise, u(g = x;) < oo for all i = 1,...,m. For a fixed 4, choose € such that 0 < ¢ < x;. Let
Ay = {g = z;} N{gn > x; — €}; again, this is an increasing sequence of sets whose union is {g = z;}.
By o-additivity, we have u(A4,) ~ u(g = ;) as n — co. Then,

| ondnz @i 9uldn) (i - Outg = )
{g==:}
as n — 0o. Summing this result over i = 1,...,m gives

lim gnduZ/gdu-

n—oo

O

Theorem 4.8 (Poor man’s Beppo Levi’s Monotone Convergence Theorem). Let f > 0 be measurable and
let (fu)n>1 be a sequence of nonnegative simple functions that increases to f. Then

lim fndu:/fd,u.
n—oo

Proof. One direction is clear by the definition of the integral for nonnegative functions.

/fndMS sup /gduz/fdu.
g simple

0<g<f
We consider the other direction.

Case 1. [ fdu < oo. For any € > 0, there exists a simple function i such that 0 < h < f and [hdp >
[ fdp —e. By the previous lemma, lim,, o [ frdp > [ hdp, so limy, e [ frndp > [ fdp.

Case 2. [ fdu = oco. For any k € N, there exists a simple function h such that 0 < h < f and [ hdu > k.
Again, using the previous lemma, lim,, oo [ frndp > [ hdp >k, so lim,, . [ fn dp = c0.

O
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Lemma 4.9. Let f,g > 0 be measurable. Then [ f+gdu= [ fdu+ [gdu.

Proof. Let (fn)n>1 and (g, )n>1 be increasing sequences of nonnegative simple functions that increase to f
and g respectively. Then f, + g, / f + g. Thus,

/f+gdu= lim /fn+gndu= lim f, dp+ lim /gndu=/fdu+/gdu~
n—00 n—00 n—00
O

Lemma 4.10. Let f be integrable and let g be measurable and such that either [ g™ du < oo or [ g~ du < oo

holds. Then
/f+gdu=/fdu+/gdu-

Proof. Assume without loss of generality that [ ¢~ dp < co. Then

Juvorans [1eoa= [ rar [oan<w.

Then noting that
(f+9t =+~ =f+g=f"—f+g" -9

gives
/(f+g)+du+/f’du+/g’du:/(f+g)++f’+g’du
:/(f+g)’+f++g+du

and finally, using the fact that f (f+9) du, f f~,and f g~ are finite, we may rearrange the above equality

to get
JGvatan [rrorai= [ran [ dus [ gt au- [ a
/f+gdu:/f+/g~

Theorem 4.11 (Beppo Levi’s Monotone Convergence Theorem). Let g, f, (fn)n>1 be measurable functions
such that f|g\ dp < 00, g < fn almost everywhere for each n, and f, /* f almost everywhere. Then

O

lim fndu:/fdu.
n—oo

Proof. We first assume g = 0, and handle the general case later. By assumption, there exists N € F with
w(N) = 0 such that f, ~ f, where f, := 1ncf, and f := 1ycf. Note that f; > 0. Then we have h,,  f,

where
n2"—1

7
hn :an{]’c’nzn}'i‘ Zl 271{#§fn<i;L1 .

By the previous theorem, lim, oo [ hypdp = [ fdpu. Since h, < f, for each n, we have

lim [ fudp= lim /fndu:/fdu:/fdu,
n— o0 n— oo
and we are finished for this case.

For general g, we can apply the above result for f, —g 7 f — g to get lim, o [ frn —gdp= [ f—gdu.
Adding both sides by [ gdu (which is justified because [|g|dp < co by assumption) gives the result. O
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Lemma 4.12. If f is integrable, then for each € > 0 there exists § > 0 such that

/Alfld/~t<6

Proof. By the monotone convergence theorem (Theorem 4.11),

for any measurable set A satisfying P(A) < 6.

lim \ldp = /\fldu,

k=00 J{| f1<k}

so there exists a large K such that

Jistdn= [ ifidn<ep2
{IfI<K}

Then for measurable set A satisfying P(A) < 6 := ¢/(2K), we have

du = du — d d
/A fldu ( /A \fldp /A e u>+ /A e 1

<e/2+ K - P(A)
< €.

O

We now consider sequences of functions that are not necessarily monotone. In general, we cannot push
the limit under the integral. Consider f, :=nl(g,1/n)- The functions converge to f := 0, but

ILm fnd,u:l;é():/fd,u.

However, the following result does hold.

Theorem 4.13 (Fatou’s Lemma). Let g and (f,)n>1 be measurable functions such that [|g|dp < co and
g < fn almost everywhere. Then

/lim inf f,, du < lim inf/fn du .
—00

n—oo n

Proof. Let h,, :=inf,,>y fn,. Then h,, A~ liminf,_,. f, and h,, > g almost everywhere for all n. Thus,

/liminf frndu :/ lim A, du
n—oo n—oQ

= lim [ hy,du monotone convergence theorem
n— oo

IN

lim inf /fmdu

n—oom>n

= liminf [ f, du.

n—oo

O

Corollary 4.14. If g and (f)n>1 are measurable functions such that [|g|dp and g > f,, almost everywhere
for all n, then

/lim sup f du > lim sup/fn du .

n—o0 n—oo
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Theorem 4.15 (Lebesgue’s Dominated Convergence Theorem). Let g, f, and (fn)n>1 be measurable func-
tions such that [|gldu < oo, |fnl < |g| almost everywhere for each n, and f, — [ almost everywhere.

Then
/Ifldué/lgldu<00-

1)
2)
ILm fndu:/fdu.

)
i 1 = flau=0.

n—

Proof. Since |f,| < |g| almost everywhere and f,, — f almost everywhere, we have |f| < |g| almost every-
where. Thus [|f|dp < [|g|dp < cc.
For the second result, note that

/fd,u < lim inf/fn dp Fatou’s lemma
n—oo
< lim sup/fn dp
n—oo
< / lim sup f,, du Fatou’s lemma (corollary, use —g)
n—oo

~ [ ran.

so all inequalities above are equalities.

Finally, for the final result, note that | f,, — f| < 2|g| and lim,,_ oo | fn — f| = 0 almost everywhere. Applying
the second result produces the third result. O

Theorem 4.16 (Fubini’s theorem and Tonelli’s theorem). Let (Qy,F1, 1) and (2, Fa, p2) be measure
spaces and let f: (Q x Qa, F1 @ F2) = (R, B(R)) be measurable.

a) Fubini’s theorem. If

/ 1l ® p2) < o0,
QlXﬂz

then
/ fd(p @ p2) = / flwi,w2) dpa(wa) dpy (wi) = / flwr,w2) dpa (wr) dpz(w2) € R.
Ql XQz Ql Q2 Qz Ql
b) Tonelli’s theorem. If f > 0 and py and ps are both o-finite, then

/ F (i ® iz) = / F (1, w2) dpia(ws) dpi (s) = / F (w1, ws) dyiy (1) dpin(w2) € [0, 00].
Q1 X0 Q1 JQo Qo J O

Definition 4.17. Let (2, F, 1) be a measure space. We define
LY := {measurable f: (2, F) — (R,B(R))}.
Let ~ be the equivalence relation on £° given by f ~ ¢ whenever f = g almost everywhere. Then we define

LY=L ~.
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For f € £° and p € [1,0), we define the p-norm
1/p
151 i= ([ an)

Lr={feLl:|fll, < oo}
LP:=LP) ~

along with the function spaces

The p-norm is a norm on LP, i.e., it satisfies
1) |[efll = |l f]| for c € R, f € LP,
2) If + gl < IIfIl + llgll for f,g € LP, and

3) |If]l = 0 implies that f = 0 [note that 0 € L? is the equivalence class of all functions that are zero almost
everywhere].

For f € LY, we also define
[fllo :=inf{A € By : u([f| = A) = 0},

with the additional convention that inf & := co. We define

L2 :={feL’:|fllo < o0}
L®:=L%/~
Proposition 4.18. If u(Q) < oo, then L1 C L? for q > p.

Proof. Let f € L% If A := {f < 1}, we easily see that [,|f["du < p(2) < oo, so integrability of |f[P is
determined by its behavior on A°. However, on A°, we have |f[? < |f|?, so [,.|fIPdp < [,.|f]9dp < oco. O

Theorem 4.19 (Hoélder’s inequality). For 1 < p,q < oo such that 1/p+1/q = 1, we have

1l = / Faldin < 11 llpllglly-

Note that Holder’s inequality gives a precise bound for Proposition 4.18.

Corollary 4.20. If u(2) < o0 and 1 < p < g < o0, then

£l < s(Q)7 5| £l

+ % Then - + -1 =1, so applying Holder’s inequality (Theorem 4.19)

Proof. Let r be such that 1 = 1 1
P q a/p ' r/p

to fP and the constant function 1 gives

17 < U2 llaspl Ll = LA - (2P

Taking the pth root of both sides proves the result. O

Theorem 4.21 (Minkowski inequality). For 1 < p < oo,

1+ gl < 171l + llgllp-

Theorem 4.22. For every measure space (Q, F,u) and p € [1,00], LP is a Banach space and L? is a Hilbert
space with (f,g) :== [ fgdpu.
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4.2 Probability measures and modes of convergence

Proposition 4.23. Let (0, F, u) be a measure space, (E,E) a measurable space, and [ : (Q,F) = (E,€) a
measurable function. Then the pushforward measure

is a measure on (E,E) such that

/gofdu:/gdﬂf
Q E

holds for any measurable g : (E,£) — (R, B(R)), provided the integral exists.
If p is a probability measure, then so is uy, and it is called the distribution of f, sometimes denoted

pp=po ft.
Definition 4.24. Let X be a random variable on a probability space (2, F, P). We define the following.

/XdP for X € L!
Var(X) := E[(X — E[X])?] = E[X?] — E[X]? for X € L?
Cov(X,Y) := E[(X — E[X]))(Y — E[Y])] = E[XY] — E[X]E[Y] for X € L* c L'

Example 4.25. Let (©, F, P) be a probability space with X € L!. The distribution P o X~ is uniquely
given by the cdf Fix(z) := P(X < z) for x € R.
X has the same distribution as the identity function on (R, B(R), P o X ~!). In particular,

E[X] = /Rmd(P oX ).

We can also use the Stieltjes integral to write the expectation as the sum of two Riemann integrals.

/{EdFX
R

0 oo
/ xdFx(z /0 xdGx(x) Gx(z):=1—-Fx(z)

= —/ Fx(z)dx +/ Gx(z)dx integration by parts, see homework
—00

0 oo
:/ (P(X>;v)—l)d;v+/ P(X >z)dx.
0

— 00

We define the right-quantile function gx : (0,1) — R by
gx (u) :=sup{z € R: Fx(z) < u}.

This is in some sense the “inverse” of Fx; it may be incorrect on a set of measure at most zero. It is a
random variable on ((0,1),8((0,1)),A), where )\ is the Lebesgue measure. We have

AMgx <) = A({u € (0,1) : Fx(gx(u)) < Fx(u)}) = Mu < Fx (u)

which implies gx 4x. Moreover,
1
E[X] = / gx (u) du.
0

Definition 4.26. Let (w, 7, P) be a probability space and I a nonempty set.
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1) A family of events {A;};cs is independent if

M M
P( ﬂ Az) H P(A;,,)
m=1 m=1

for every finite subset {i1,...,ip} C I.

2) A family of o-algebras {F;}ics is independent if the family of events {A;};c; is independent for any
A; € Fi, 1€ 1.

3) A family of random variables { X, };cs is independent if the family of o-algebras {o(X;) }ier is independent.

Proposition 4.27. Let X1,..., Xy be random variables on a probability space (2, F, P). The following are
equivalent.

1) Xy,..., Xy are independent.

2)

=

E[fm(Xm)]

M
E [H fm(Xm)] =
m=1

for all bounded Borel functions f1,..., far.

m=1

3)

M=

E[exp(iuTX)] = Elexp (it X )]

m=1

for any u € RM.
Corollary 4.28. If X,Y € L? are independent, then
E[XY] = E[X]E[Y],
i.e., Cov(X,Y) =0.

Proof. Take trunctations of the ranges of X and Y by [—N, N], then take N — oo and apply the dominated

convergence theorem (Theorem 4.15). O
Theorem 4.29 (Borel-Cantelli Lemma). Let Aj, Ay, ... be a sequence of events in a probability space
(Q,F,P).

a) If ZZO:1 P(A,) < oo, then

Pl UA4.|=0

m>1n>m

b) If all the events are independent and Y .. | P(A,) = oo, then

P ﬂ UAn =1.

m>1n>m

Proof.



M M
logP< ﬂ A%) = log H P(A7) complements are independent
M

M

< Z (P(A7) —1) log(z) <z —1
- M

=3 P4, "= o,

implying P (5, 45 ) = 0, and thus P(U,5,, 4n ) = 1. Finally,

P ﬂ UAn = lim P UAn =1.

m>1n>m n>m

O

Definition 4.30. Let X, X1, X5, ... be random variables on a probability space (€2, F, P). There exist the
following concepts of convergence.

(i) (Xn)n>1 is said to converge to X almost surely if there exists a set N € F with P[N] = 0 such that

lim X, (w)=X(w) forallweQ\N.

n—oo
We denote this by X,, — X a.s.
(ii) For p € [1,00], (Xy;)n>1 is said to converge to X in LP if

lim | X — X[, = 0.

n—oo

We denote this by X,, = X in L? or by X,, .
(iii) (X,)n>1 is said to converge to X in probability if for all € > 0,

lim P[|X, — X|>¢€ =0.

n—r oo

We denote this by X,, — X in probability or by X,, — X.

(iv) (Xn)n>1 is said to converge to X in distribution if

lim E[f(X,)] = E[f(X)]

n—oo

for every bounded continuous function f : R — R. We denote this by X,, — X in distribution or by

X, NS (Note that this notion of convergence also makes sense if the random variables X, X1, X, . ..
are all defined on different probability spaces.)

Proposition 4.31. The following implications hold.
a) (i) = (i)
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d) It follows from (iii) that there exists a subsequence (X, )k>1 that converges to X a.s.

e) If the (X,)n>1 are dominated by an LP function, then (i) = (ii).

Lemma 4.32. If F is a cdf, then there are at most countably many x € R at which F is not continuous.
Proposition 4.33. A sequence of random variables (X, )n>1 with respective cdfs (Fy)n>1 converges in

distribution to a random variable X with cdf F if and only if F,,(x) — F(x) whenever F is continuous at x.

4.3 Uniform integrability

Definition 4.34. A family of random variables (X;);c; on a common probability space (£, F, P) is uni-
formly integrable if
lim sup/ | X;|dP = 0.
{IXi[>c}

c— 00 iel

Lemma 4.35.

1) If (X,)ier is a family of random variables on a common probability space (U, F, P) such that | X;| < |X]|
for alli € I, where X € L*(Q, F, P), then the family is uniformly integrable.

2) If we have finitely many random variables X1, ..., X, € L*(Q, F, P), then they are uniformly integrable.

Proof. For the first statement,

lim |XZ|dP < lim E[l{‘X|>C}‘X” = O,
c—00 {\Xi\>c} c—00

where the last equality follows from the dominated convergence theorem (Theorem 4.15) because
(x> X[ =0

almost surely as ¢ — oo.
For the second statement, note that | X;| < |X1|+---+|X,| for each i € {1,...,n} and apply the previous
statement. O

Proposition 4.36. A family of random variables (X;)icr on a common probability space (Q, F, P) is uni-
formly integrable if and only if both of the following statements hold.
a) The family is bounded in L', that is,

sup E[| X;|] < 0.

i€l

b) For each € > 0, there exists a 6 > 0 such that

/|Xi|dPS6
A

forallie I and A € F such that P(A) < 4.

Proof. We first observe that for A € F, we have

/\Xi|dP:/ |Xi|dP+/ |Xi|dP§c~P(A)+/ IX,|dP .
A An{|X;|<c} An{|X;|<c} An{|X;|>c}

So, if the family is uniformly integrable, there exists ¢ > 0 such that f{\Xi|>c}‘Xi| dP < 1foralliel.
Then the above statement with A = Q gives E[|X;[] < c- P(Q) +1=c+1 for all i € I, proving a).
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Fix € > 0. If the family is uniformly integrable, there exists ¢ > 0 such that f{\Xi\>c}|Xi| dP < ¢/2 for
all i € I. Let § = ¢/(2¢). If P(A) <4, then by our work above we have

/|Xi\dP§c~P(A)+/ | X;|dP <,
A {|X:|>c}

proving b).
We now show the converse; suppose a) and b) hold, and let K := sup,c; E[|X;|] < co. Then
c-P(|Xi|>c)§/ | X;|dP < K
{1X3]>c}
for all i € I. Given e > 0, choose ¢ such that b) holds, and let ¢ := K/§. We just showed that P(|X;| > ¢) <
K/c=4¢foralliel. Byb), f{IX'i|>C}|Xi| dP < e for all i € I, proving uniform integrability. O

Lemma 4.37. If (X;);cr and (Y;)ier are two uniformly integrable families of random variables on a common
probability space, indezed by the same index set, then (X; + Y;)ier is also uniformly integrable.

Proof. We use Proposition 4.36. Since a) holds for each family, we have

sup E[| X; + Y;|] < sup E[|X;]] + sup E[|Y;]] < oc.
il il iel

Fix e > 0. Since b) holds for each family, there exists § > 0 such that [,|X;|dP < e/2and [,|Y;|dP < ¢/2
for all ¢ € I and any A € F such that P(A) <J. Then

/|XZ-+YZ-|dP§/|Xi|dP+/|}Q|dP <e
A A A
Thus, (X; + Y;)ier is uniformly integrable. O

Theorem 4.38. Let X and (X,,)n>1 be random variables on a common probability space (Q, F, P) such that
Xn — X almost surely and such that (X,,)n>1 s uniformly integrable. Then

1. X e LY,

2. E[X,] — E[X], and

3. E[|X,, — X|] = 0 (i.e., L'-convergence).

Proof. By Proposition 4.31, there exists a subsequence (X, )r>1 such that X,, — X almost surely. By
Fatou’s lemma (Theorem 4.13) and uniform integrability, we have

E[|X]] < liminf E[| X,,,|] < oo,
k— o0

which shows that X € L.
By the previous lemma, the family (X,, — X),,>1 is uniformly integrable. Given € > 0, choose ¢ > 0 such
that

/ | X, — X|dP < ¢/3,
{‘Xn_X|>c}
and choose ng such that
P(1X, — X|>¢€/3) <¢/(3c)

for all n > ng. Then,

BllX - x| = [ X, - x|ap+

{1 X —X|<e/3} {e/3<|Xn—X|<c}

<e¢/3+c-P(|X,—X|>¢/3)+¢/3
<e,

|Xn—X|dP+/ X, — X|dP
{‘X,L7X‘>C}

showing that E[|X,, — X|] — 0.
To show the remaining claim, note that both E[(X,, — X)*] and E[(X,, — X)~] are bounded by E[|X,, —
X|] = 0 for all n, so E[X,, — X] — 0, i.e., E[X,] — E[X]. O
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Theorem 4.39 (de la Vallée-Poussin). A family of random variables (X;);c; on a common probability space
(Q, F, P) is uniformly integrable if and only if there exists a function ¢ : Ry — Ry such that
lim L(m) =
r—oo I
and such that
sug>E[<p(|Xi|)] < 00.
i€
Further, if the family is uniformly integrable, this ¢ can be chosen to be conver and nondecreasing.
Proof. Suppose there exists such a ¢ for a family. Fix e > 0 and let K := sup;c; E[¢(|X;|)]. There exists a
¢ > 0 such that ¢(x)/xz > K/e for all x > ¢. Then,

/ \Xi|dP§/ P € 1p < .
{1Xi|>c} {1X;|>e} K

Thus, the family is uniformly integrable.
We now show the converse. Suppose the family is uniformly integrable. Then there exists a strictly
increasing sequence (¢, )n>1 such that ¢; > 1 and such that

1
/ |1X;|dP <
(1X:|>en} 2

for all 1 € I.
We define
f = an(cn,cn+1] = Z 1(cn,oo)a
n>1 n>1
and

p(x) = /OI fly)dy.

This is a piecewise-linear convex function with increasing slope. Also, ¢(z)/x — 0o as x — 0.
We have

Blo(1 X)) = E [ | ten s dy]

= / fW)P(1X;:| > y)dy Tonelli (Theorem 4.16)
0

=> [ P(Xi|>y)dy MCT (Theorem 4.11)

n>1 Cn
1

< on see below
n>1

=1.

To bound the integral above, note the following.
1

on Z/ | Xi|dP

2 (X[ >en)

:// (X [>y}n{|Xi|>cq} Y AP
QJo

= / P(|X;| > max{y,cn})dy Tonelli (Theorem 4.16)
0

— en- P(Xi| > c>+/ P(Xi| > ) dy
Cn

z/ P(X| > y)dy

25



Corollary 4.40. A family of random variables (X;);er on a common probability space is uniformly integrable

if

sup|| Xi||, < oo
iel
for some p € (1, 00].
Proof. Noting that || X;||, = E[X;[?]'/?, we see that the assumption implies that sup,c; B[ X;[P] < oc.

Applying the previous theorem with ¢(x) := 2P finishes the proof.

4.4 Jensen’s inequality

Definition 4.41. A function ¢ : R — R is convex if
Az + (1= ANy) < Ap(x) + (1= A)e(y)
holds for any z,y e Rand 0 < A < 1.
Proposition 4.42. Convex functions are continuous, and their one-sided derivatives

i P&+ — so(w)7 i P(%) — ¢z —€)

eN0 € eNO €

exist for all x € R.

Theorem 4.43 (Jensen’s inequality). Let X be a random variable, let ¢ : R — R be a convex function, and
let X,o(X) € L. Then

Proof. Let a := E[X] and

b:= lim
e\ €
Then for all z € R we have
b < £0) = ela)
Thus,
(X) = p(a) +b- (X —a)
Elp(X)] = ¢(a) + b+ (E[X] — a) = ¢(E[X])

Corollary 4.44. Let X be a random variable on a probability space (2, F, P). Then
1X1lp < 1 X1lq
for 1 <p<q<oc.

Proof. If ¢ = 0o, then
E[|X[7]V? < E[| X157 < 11X ]|oo-

If ¢ < 0o, then noting that x — x9/? is a convex function, we have the following from Jensen’s inequality.

I1Xly = E[IX|9]Y/¢ = E[|.X["¢/#)*/4 > E[| X |P]"/?.
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4.5 Weak law of large numbers

Lemma 4.45. If X1,..., X, are random variables, then
Var (Z Xi> = Z Var(X;) + 2 Z Cov(X;, X;).
i=1 i=1 i<j
Proof.

Var<zn:X,-> —E (ix EXi>2

n

—E|) (Xi—EX,)’+) (X, -EX,))(X; —EX))

| i=1 i£]
- iVar(Xi) +2) " Cov(X;, X;).
i=1 i<j
O
Theorem 4.46 (Weak law of large numbers). Let X1, Xa,... be uncorrelated (zero pairwise covariance)

random variables in L? such that E[X,] =m for all n and such that sup,, E[X?2] < co. Then
1 n
— Z X;—>m
[

in L% (and thus, in probability as well).
Proof. Let k := sup,, E[X?2] < co. Then

2
1 & 1 &
E (ngxi—m> :Var(n;X,)
:leVar<zn:Xi>
=1

= — Z Var(X;) the X; are uncorrelated

as n — 00, showing L? convergence. Proposition 4.31 shows why convergence in L? implies convergence in
probability. O

4.6 Types of distributions

Definition 4.47. Let Q be a nonempty set. Given w € ), the Dirac measure is the map §,, : 2 — {0,1}

defined by
5u(A) = 1 weA,
0 w¢A
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Definition 4.48. Let u be a measure on R%.
e We call ;1 discrete if =) - pndy, for z1,29,€ R? and p1,po,... > 0.

e We call 1 continuous if 1((a1,b1] X - -+ x (ag,bg]) is continuous in b € R

e We call ;1 absolutely continuous if there exists a Borel function? f : R? — R, such that

by by
p((ar,b1] x -+ x (aq, ba)) =/ Fi, - ya)dyr -+ dyq -

d

This f is called the density of . Moreover,

for any A € B(R)®¢ and
/ g(z) du(z) = / g(z) f(z)dx
Rd

R4
for any measurable function ¢ : R4 — R.

Note that if fi,..., f4 are densities on R, then f(z) := fi(x1)f2(z2) - fa(zq) is a density on R?, and
the corresponding measure is g = 1 ® -+ - ® piqg.

Definition 4.49. A random vector on a probability space (§2, F, P) is a vector X := (X7,..., Xy) where
X1,..., X4 are random variables. It is a measurable mapping X : (2, F) — (R¢, B(R)®?).

e We call X discrete if the pushforward measure P o X! is discrete.

e We call X continuous if the pushforward measure P o X! is continuous.

e We call X absolutely continuous if the pushforward measure P o X ~! is absolutely continuous.
Example 4.50. We list some examples of discrete distributions on R.

1. Discrete uniform. u(n):=1/N,forn=1,...,N.

2. Bernoulli. x(0) :=1—p, u(1) := p, with p € [0, 1].

3. Binomial. u(n) = (Jx)p”(l —p)N=" forn=0,...,N.

—AA"

n!?

4. Poisson. u(n):=e for n =0,1,..., where A > 0.

5. Geometric. With 0 < p <1,
o u(n) :=p(l—p)1t forn=12,...,
e u(n):=p(l—p", forn=0,1,....
Example 4.51. We list some examples of densities on R.

1. Gaussian. f(z):= —=L—e~(@=1"/(29") for all z € R, with x € R and ¢ > 0.

2702

2. Uniform. f(z):=1/(b—a) for a <z <b.

3. Exponential. f(x) := \e™* for x > 0, with A\ > 0. An important property of this distribution is
memorylessness, which we will explore later.

4. Bilateral exponential. f(z) := 1Xe =l for 2 € R, with A > 0. [One can also consider using a two
different values of A for the positive reals and the negative reals.]

5. Cauchy. f(z):=0/(n(2® + 6?)) for z € R, with § > 0. A Cauchy random variable has no moments
due to its heavy tails.
If X,Y ~ N(0,1) are independent, then X +Y 4 V2X. If X,Y ~ Cauchy(0) are independent, then
X+YLox

2A Borel function is measurable with respect to the Borel o-algebras on both its domain and its range.
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4.7 The characteristic function

Definition 4.52. Let X be a d-dimensional random variable with cdf F(z1,...,24) := P(X1 < xz1,..., X4
z4). The characteristic function ¢y : R¢ — C is defined by

IN

u + Elexp(iu’ X)],

where utX == u1 X1 + - + ug Xg.
If F has density f, then

@X(u):/ exp(iu‘z) f(x) dx .
R4
Definition 4.53. If Z = V +iW for V,W € L', then we define E[Z] = E[V] + i E[W]. In particular,

Ele’" X] = E[cos(u? X)] + i E[sin(u? X)].
Additionally, E[|Z|] = E[VV?2 + W?2] <E[|V]| + [W]] < cc.

Lemma 4.54. If Z =V +iW for V,W € L, then |E[Z]| < E[|Z]].

Proof.
[F(Z]] = sup Re(¢! E[2])
q€Q
= sup E[Re(e1Z)]
q€Q
<E {sup Re(eiqz)]
q€Q
= E[|Z]).
O
Lemma 4.55. Let X be a d-dimensional random variable.
1) lox(u)| < 1.
2) ox(—u) = px(u) = p_x(u).
3) If ox is real-valued, then X 4 _x.
4) u s px(u) is uniformly continuous in R%.
Proof. For 1), note that
lox (u)] < Eflexp(iu'X)[] < 1.
For 2), note that
¢-x(u) = ¢x(—u) = Elexp(iv' X)] = ox (u).
For 3), if px is real valued, then 2) shows that px(u) = v_x(u).
For 4),
lpx (hu) — px (u)| < Eflexp(i(h + u)'X) — exp(iu' X)[] < E[|exp(ih’ X) — 1]] = 0
as h — 0.
O

Lemma 4.56. Let Y be a random variable on a probability space (0, F, P) with Y >0 a.s. and E[Y] = 1.
Then Q : F — R defined by
Q(A) :=E[14Y]

is a probability measure on (0, F). Moreover, if X is a random variable on (2, F), then

Eo[X] = E[XY].
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Proof. We know @ maps into R, because Y > 0 almost surely. Clearly we have Q(Q2) = E[Y] = 1 and
Q(2) = E[0] = 0. Countable additivity holds readily.

UAn | =E[D 14,V | =D E14,Y]=> Q(A4,)

n>1 n>1 n>1 n>1

We omit the proof of the change of measure formula. It is clear when X is a simple function; for general
X, approximate it by simple functions. O

Theorem 4.57. Let X be a real-valued random variable on a probability space (2, F, P).

1) IfE[|X|"] < oo for some n € N, then we have the following.

. <pX u) exists for all k < n.

o o (u) = E[(iX)* exp(iuX)).

o E[X*] = (—i)*¢{(0).

o ox(u) =37, 1;;3 E[X*] + @, (u) with lim, o e, (u) = 0.

(
(

2) If ga(%)( 0) ewxists then E[X?¥] < co.

Proof of 1). The third and fourth bullets follow directly from the first and second.
Consider the case n = 1. We first note that

exp(ihX) -1 d .
i ———"—= exp(ihX) o iX.
Also, from the bound |exp(i6) — 1| < |0] we have
exp(ihX) — 1’ < x|
— | S XL

We have | X| € L! by assumption. Thus we may use the dominated convergence theorem (Theorem 4.15) to

prove the case n = 1.

exp(ihX) — 1
h

/

. u+h) — u
) =ty EXH) = g3t

= lmE [exp(iuX) ] = E[iX exp(iuX)].

We prove the result for general n by induction. Note that E[|X|"T!] < oo implies E[|X|¥] < oo for all
k < n+1 (Proposition 4.18 or Theorem 4.19), so by induction gp( )(u) exists for all £ < n. Then, by the

same argument,

gog?H)( )= lim E|(zX)" exp(iuX)w

h—0 n ] = E[(iX)" ! exp(iuX))].

Proof of 2). Consider the case k = 1.
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1 (@(Zh) —¢(0) | ¢(0) - <P(—2h))

i — 1
¢x(0) = lim oh + oh

h—0 2

= lim #(w(zh) + p(—=2h) — 2(0))

1 . ‘
= ilzli% e Elexp(i2hX) + exp(—i2hX) — 2]

— i L ~ ' 2
= }ILILI%) T E[(exp(ihX) — exp(—ihX))?]

- | ()

sin(hX)\?
—-E llim inf( ) XQ] Fatou’s lemma (Theorem 4.13)

IN

h—0 hX
= —E[X?].

Since E[X?] < —¢’%(0) < oo, we have shown the result for k = 1.

To show the result for for general k, we use induction. Suppose gog?kJrQ)(O) exists. Then cpg?k)(O) exists,
which implies E[X?¥] < oo by the inductive hypothesis. We know E[X 2] = E[(X*)?] > 0. If E[X?] = 0,
then X2¥ = 0 a.s. (because it is nonnegative), so E[X?**2] = 0 and we are finished. Thus, we may assume
E[X?] > 0.

Let @Q : F — R be defined by

X2k :| _ E[]_AXQk]

Q(A) = E{lAE[sz] E[XQk]

By Lemma 4.56, @ is a probability measure. Let @g(u) := Eqg[exp(iuX)] be the characteristic function with
respect to the measure ). Then,

% (1) = Eqlexp(iuX)]
B [sz exp(iuX)}
- E[X%}
_ E[X% exp(iuX)]
E[X 2]
R

Lemma 4.56

Thus, (¢%)"(0) exists, which implies Eq[X?2] < oo by our work in the case k = 1. By the definition of Eq,
we have E[X2*+2]/ E[X?¥] < oo, and finally, E[X?*2] < . O
Example 4.58. We give some examples of characteristic functions.

1) Dirac delta. If P(X = a) =1, then ¢ x (u) = exp(iua).

2) Gaussian. If X ~ N (p,0?), then ¢y (u) = exp(iup — 30°u?). (See Lemma 4.62.)
3) Bernoulli. If X ~ Ber(p), then o x(u) = (1 — p) + pexp(iu).

)

4) Binomial. If X ~ Bin(n,p), then it is the sum of n i.i.d. Ber(p) random variables X1, ..., X,,, so using
independence (Proposition 1.9),

ox(u) := Elexp(iuX)] = Elexp(iu(X1 + - - - + X,))] = Elexp(iuX1)]" = (1 — p + pexp(iu))".
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5) Poisson. If P(X =n) = e_’\% for n > 0, then

(ezu)\)n
n!

px(u) ;= Elexp(iuX)] = Z ei“”e*)‘% =e A Z

n>0 n>0

=exp(A(e™ —1)).

6) Exponential. If X ~ Expon(A), then ¢(u) A

=T
The most important property of the characteristic function is that it uniquely determines the distribution
of the random variable.

Theorem 4.59 (Inversion theorem). Let X be a random variable with cdf F' and characteristic function
¢(u) = E[exp(iuX)].

1) Let a < b in R, and let F(xy) = limy »y, F(x). We have

Fb)+FOb") F(a)+F(a) = lim ®(c)

2 2 c— 00

where

B(c) = /C exp(—ita) — exp(—itb)gp(t) it

., it
2) If [zle(u)|du < oo, then F has a density f and f is continuous.

Proof of 1). We define the function g. as

go(z) = /C sin(t(x — a)) — sin(t(x — b)) it

c t

c(z—a) _: c(x—b) :
:/ Smudu—/ SN u=t(x—a),u=tlx—0>)
—c(z—a) U —c(z—b) U

:2/C(x_a) sinudu_2/c(’c—b) sinudu.
0 u 0 u

Recalling the Dirichlet integral

u

/ smudu: /2,
0

we observe the limiting behavior of g. as ¢ tends to infinity.

0 xz>borzx<a,
llm ge(x) =421 a <z <b,
m  x € {a,b}.

We can also rewrite this as a simple function.

im ge(x) =271 (,5) (%) + 7(Liay (@) + 13 (@)).

c—00
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This allows to arrive at the desired result.

9(0) = /_cc exp(—ita) Z—t exp(—itb) Elexp(itX)] dt

e {1 / exp(—it(X — a)) — exp(—it(X — b)) dt}

. Fubini (Theorem 4.16)
2m it

E[ 1 /_ sin(t(X — a)) — sin(¢(X — b)) dt}

om t

terms involving cosine are odd

o= Elgc(X)]

5= B2 (1) (X) + (1 (X) + 103 (X))
1

:P(a<X<b)+%P(X:a)+§P(X:b)

= F(b) - Fla) + %(F(a) — F(a™)+ F(b) — F(b™))

Fb)+F(b™) F(a)+ F(a™)
2 B 2 '

Proof of 2). Let

flx):= % /_(X> e Tp(t)dt.

Since we have [ |o(t)|dt < oo by assumption, we know f is well-defined and continuous in . [Fourier

transform of L' function is continuous.
Let @ < b with F' continuous at both a and b.

/f dm—/ 27r/ e " p(t) dt du

go(t)/ U o dt Fubini (Theorem 4.16)

1 /C exp(—ita)i—texp(—itb)sp(t) &t

I
.é’T.'
|

= F(b) — F(a). by part 1)

Now let a < b with F' not necessarily continuous at a and b. Because there are countably many discon-
tinuities of F, there exist decreasing sequences (a,)n>1 and (b,),>1 that converge to a and b from above,
such that F' is continuous at each a,, and b,. By absolute continuity of f, we have

F(b) — F(a) = li_)m (F(b,) — F(an)) = h_>m f )dx = / f(zx
so f is a density for F. O
Corollary 4.60. The distribution of a random variable is uniquely determined by its characteristic function.

We remark that there is also an inversion formula for random d-dimensional vectors, and thus the distri-
bution of a d-dimensional random variable is uniquely determined by its characteristic function.

Corollary 4.61. A random vector X := (X1,...,Xq) has independent components if and only if px(u) =
ox, (u1) -+ - ox, (ua)-
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Proof. If X has independent components, then

px (u) = E[e™" X] = E[e™%1]. .. E[e™X0] = o (u1) -~ o, (ua)-

Conversely, suppose px (u) = px, (u1) -+ ¢x,(uq). Let Y1,...Yy be independent random variables with
characteristic functions ¢x,,...,px, (i.e, Xi 4 Y} for each k), and let Y := (Y7,...,Yy). Then px = @y,

so by the inversion formula, X Ly, O
Lemma 4.62. If X ~ N(0,1), then its characteristic function is ox (u) = e /2.
Proof. If v € R, then

1 > 2
Efev¥] = — e~ /2ev dg
V 21 /—oo

v?/2 oo

e 2

_ —(z—v) /2d

= e X
V2T J oo

= 61}2/2.

Now let v € C. The function €**/2 is analytic. The function E[evX] is analytic, since its derivative is
E[Xe"X] (by the dominated convergence theorem). Since the two functions agree for real v, they agree for
all complex v by analytic continuation. Letting v = iu proves the lemma.

Note that the same proof can be adapted to show that ¢x (u) = exp(iup — $0%u?) if X ~ N (p,0?). O

Example 4.63. If X, Y ~ N(0,1) are independent, then what is the distribution of X +Y? One approach
is to directly find the pdf.

Ixiv(z) = /_00 Ix@)fy(z—2)de=--= 2\1/%6—22/47

so X +Y ~ N(0,2).
However, it is much easier to consider the characteristic functions and apply the inversion theorem
(Theorem 4.59).

E[eiu(X+Y)] _ E[eiuX] E[emy] _ efqﬁ'

The first equality is due to independence of X and Y.

Theorem 4.64 (Continuity theorem). Let X1, Xs, ... be random variables on probability spaces (2, Fr, Pn)
respectively, with ¢, = px,, .

1) If X, A x for some random variable X, then @, — @x pointwise for every u € R.

2) Iflimy, o0 pn(u) exists for allu € R and the limit function o(u) := limy, o0 @n(u) is continuous at u = 0,

then @ is the characteristic function of a random variable X, and X, NS

Proof. If the X, converge in distribution to X, then by definition E[f(X,)] — E[f(X)] for any continuous
bounded function f. The first statement then follows immediately by writing E[e™ X] = E[cos(u” X)] +
i E[sin(u? X)] and noting that sin and cos are continuous and bounded.

For the second statement, see §18.1 in Probability with Martingales by David Williams. O

Theorem 4.65 (Central limit theorem). Let X1, Xo, ... be i.i.d. (independently and identically distributed)
random variables on a common probability space (Q, F, P) with E[X}] < co and o := \/Var(X1) > 0. Then

1 - X, -E[X)] 4
— ) =L U 57
\/ﬁ; o

as n — oo, where Z ~ N(0,1).
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Proof. Let Y := (X1 — E[X;])/o. Then E[Y] = 0 and E[Y?] = 1. By Theorem 4.57, we have

2

U
oy(u)=1- 5 + uze(u),

where lim,_,¢ €(u) = 0. Then,

u? n u?
— + —¢
2n n

Oy ym(u) = ey (u/v/n) =1 - (u/\/n).

X, —E[Xi]

— , which is the sum of n i.i.d. random variables

Let ¢, be the characteristic function of ﬁ DOy
with the same distribution as Y/y/n. Then,

2 2 n
euli) = (1 5+ Soclu/vi)
2 2
g ) = mlog (1~ 2+ (/v )

2n
lim log o (1) = lim ~ log ( 1 P §i=1/
nrae 08 Pnt) = (UG 5 08 2 =
—u?/2
lim 1 n(u) = li L’Hopital’s rul
Jim_log (u) 51{‘1%)176% opital’s rule
. .2
Jim log pn (u) = —u”/2
: — —u?/2
nlgr;o on(u) =e .
Applying the continuity theorem (Theorem 4.64) finishes the proof. O

4.8 Normal distributions

Definition 4.66. A d x d matrix C' = [¢; ;] is symmetric if ¢; ; = ¢;; for all ¢,j. A symmetric matrix is
positive semidefinite if ©”Cu > 0 for all © € R?. A symmetric matrix is positive definite if u”Cu > 0
for all u € R%\ {0}.

Lemma 4.67. By the spectral theorem, a symmetric d X d real matriz C has real eigenvalues Aq,..., \q.
There ezists a matriz U such that UTU = UUT = I, (orthogonal) and such that

AL
vtcu =
Ad

Lemma 4.68.
o A symmetric matriz is positive semidefinite if and only if its eigenvalues are nonnegative.
o A symmetric matriz is positive definite if and only if its eigenvalues are strictly positive.
e A symmetric matriz is positive definite if and only if it is positive semidefinite and invertible.

Definition 4.69. Let X be a d-dimensional random vector with square-integrable components. Let E[X] :=
(E[X1],...,E[X4))T € R? and let Cov(X) := [Cov(X;, X;)] € R*4.

Lemma 4.70. Cov(X) is symmetric and positive definite.
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Proof.

u? Cov(X)u = Z u;u; Cov(X;, Xj)

2%

d d
= Cov Z u; X, Z u; X;
i=1 j=1

d
= Var (Z uiXi>
i=1

> 0.

Lemma 4.71. Cov(X) is positive definite if and only if 1, X1, ..., X4 are linearly independent in L>.
Proof. uT Cov(X)u > 0 for all u € R?\ {0} if and only if Var(u? X) > 0 for all u € R%\ {0}, if and only if

d
i=1

for all (ug,u1,...,uq) € R\ {0} O

Definition 4.72. We call a d-dimensional random variable X normal or Gaussian if ¢ x (u) = exp(iu? u—
1uTCu) for uw € R?, C' a symmetric positive semidefinite matrix. We denote this by X ~ Ny(u, C).
We say X is regular normal if C' is invertible, and degenerate normal otherwise.

Note that normal random vectors are completely characterized by their first and second moments.

1 1
which is not invertible. The distribution lies completely in a one-dimensional subspace of R? so there is no
density.

Example 4.73. Consider the random vector (Z, Z) where Z ~ N(0,1). Its covariance matrix is C' = F 1} )

Lemma 4.74. Let p(x) := \/%8_3”2/2. Then

f(xla v ,.’Ed) = ,0($1) T p(xd)

is the density of a probability measure on (R%, B(R?)). Then X : R? — RY defined to be the identity map is a
random vector whose components are independent standard normal. Its characteristic function decomposes

as

@X(u) — E[eiuTX] _ E[eiule] . E[eiudXd] _ e_uTu/Q.

The following proposition shows that there exists a random vector following the distribution Ny(u,C)
for any choice of € R? and symmetric positive semidefinite C' € R¥*¢,

Proposition 4.75. Let i € R? and C € R4*¢ be symmetric and positive semidefinite.

1) There exists a symmetric positive semi-definite matriz A € R4 such that A? = C. If Z ~ Ny(0,1,),
then X := p+ AZ ~ Ny(p, C), with E[X] = u and Cov(X) = C.

2) The components of X are independent if and only if Cov(X;, X;) =0 for all i # j.
3) If C is invertible, then X has density

1 1 T ~—1
iV %detCeXp(—Q(w—u) c (fc—u))-
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4) If C is not invertible, then AR? is a strict subspace of R? and X cannot have a density.
5) For every v € R¥ and M € R**4, we have Y := v+ MX ~ Ny (v + Mp, MCMT).

Proof. Let U be an orthogonal matrix such that D := UTCU is a diagonal matrix whose diagonal entries

are the eigenvalues of C' (Lemma 4.67), which are nonnegative because C' is positive semidefinite. We may

take the square root of these diagonal entries to obtain another diagonal matrix denoted v/D. Letting A :=

UVDUT gives a symmetric positive semidefinite matrix satisfying A2 = UvDUTUVDUT = UDUT = C.
It is clear that E[X] = u. Moreover, because the components of Z are independent, we have

Cov(X)=E[(X —EX)(X —EX)T]| =E[AZZT AT] = AE[ZZT]|AT = A[LAT = AAT =C.
Finally,
.7 T LT 1
ox(u) = e FE[e™ AZ] = ¢ Py (ATu) = exp (iuTu - ;UTAATu) = exp (iuTu - 2uTCu),
proving 1).

To prove 2), note that Cov(X;, X;) = 0 for all 7 # j if and only if C is diagonal, if and only if

7%uTCu

T
ox(u) =e" = px, (u1) - ox,(ua),

if and only if the components are independent (Corollary 4.61).
Note that C' is invertible if and only if A is invertible. To prove 3), note that for any B € B(R?),
P(Xe€B)=P(Zec A (B—np)
_ / !
A-1(B—p) (2m)42

~ [ Gy eyl w e e ) e

with the change of variables 2 = A=!(z — u) and dz = dz/Vdet C.
To prove 4), note that A is not invertible, so AR? is a strict subspace of R? which therefore has zero
Lebesgue measure. If X had density f, then

_1,T
e 2% *dz

P(XEB):/ f(z)dz =0
BN (p+AR9)

for all B € B(RY), a contradiction.
Finally, 5) follows using the argument and result from 1).
o g iuT MX T T . T T L r T
vy(u) =e Ele |=e" Yox(M"u) =exp|iu v+iu Mu—iu MCM*u .
O

Proposition 4.76. A d-dimensional random vector X is normal if and only if vI' X is [one-dimensional]
normal for allv € R%. [Note that we allow one-dimensional normal distributions to have zero variance, i.e.,
point masses.|

Proof. If X ~ Ny(p, C), then for any v € R%, we have
) 1
Yot x(u) = E[e““’TX] = exp (iuvTu - 2u2vTCv>,
which implies vT X ~ N7 (v p, 0T Cv).
Conversely, if vT X is normal for all v € RY, then X is square-integrable. Let p := E[X] and C := Cov(X).

Then noting that the characteristic function corresponding to Y ~ Ni(a,b) is ¢y (w) = exp(iwa — 3w?b),
we have

Al 1
px(u) =E[e™ ] = oy (1) = exp (iuTu — 2uTCU>

because a = E[uT X] = Ty and b = Var(uT X) = u' Cu. O
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4.9 Gaussian processes

Definition 4.77. Let I be a nonempty set. A family (X;);cs of random variables on a probability space is
called a Gaussian process if (X;,,..., X;,) is d-dimensional normal for any d and any d-tuple (i1, ...,iq)
of distinct elements of 1.

Definition 4.78. A function C : I? — R is symmetric if C; ; = C;; for all i,j € I. Such a function is
positive semidefinite if for any d the matrix [Cik,ie]z,ézl € R4 ig positive semidefinite for any d-tuple
(i1,...,1q) of different elements of I. Positive definiteness is defined analogously.

Lemma 4.79. If (X;)icr is a Gaussian process, then let uX := E[X;] and CZX; := Cov(X;, X;). Then CX
is symmetric and positive semidefinite.

Theorem 4.80. Let I be nonempty, and fix functions p: I — R and C : I? — R? with C' symmetric and
positive semidefinite. Then there exists a Gaussian process (X;)icr with mean p and covariance C.

Proof. For every tuple (i1, .. .,iq) of different elements of I, let P%*+% be the probability measure associated
with the distribution
Uiy Ciyiv Ciyyig
NI,
Uig Cigyir " Cigig

This family is consistent, so applying the Kolmogorov Extension Theorem (Theorem 3.46) finishes the
proof. [

Example 4.81 (White noise). For any nonempty set I there exists a Gaussian process (X;);cs such that
E[X;] = 0 and Var(X;) =1 for all i € I, and such that Cov(X;, X;) =0 for i # j.

Note that if I = N for example, then a realization of (X;);c; would appear to “jump around,” which
presents no problem because the topology on N is discrete. However, if I = R, for example, a realization of
(X)ier does not necessarily have path regularity; it would “jump around” and not be continuous.

Example 4.82 (Brownian motion). There exists a Gaussian process (X¢)ier, with E[X;] =0 and
Cov(Xy, X;) = tAs. To justify this, note that we need to verify that ¢ A s is a positive semi-definite function.
Given a tuple (¢1,...,t,) € R™ we may assume without loss of generality that 0 < #; < ¢ty < --- < t,, because
the positive semidefiniteness of the matrix generated by this tuple (in the definition of positive semidefinite
function) does not change when permuting the components of the tuple.

Note that the matrix generated by this tuple is

ty 1 ty
t1 19 to
t1 1o t3
t1 19 tn

One could prove the positive semidefiniteness of this matrix by working with the matrix directly, but we
provide an indirect approach instead.

Suppose we had a Hilbert space H that contained elements fi, ..., f, such that (f;, f;) = t; At; for each
i,7. Then we can immediately see that the matrix is positive semidefinite.

Z ’LL] t /\t ZZU,’(LJ fz,f] <ZuLf’L7Zqu]> > 0.

=1 j5=1

HM:

To achieve this, let H := L*(R) and let f; := 1[4, for each i. Then

(fi, f5) ;:/_ filx)fj(x)de =t; At;,

as desired.
We now observe some properties of this process.
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e Xy = 0 almost surely. To see this, note that E[XZ] =0A 0 = 0.

e Stationary increments. For t > s, we have X; — X, ~ N (0,t— s); note that this depends only on the
length of the increment [s, t] and not its location (stationarity). To show this note that E[X; — X,] = 0,
that

E[(X; — X,)?] = Cov(Xy, X¢) — 2Cov(Xs, X,) + Cov( X, Xo) =t —25+s5=1—3s,

and that X; — X is normal due Proposition 4.76 and the definition of a Gaussian process.

e Independent increments. For ¢ > s > v > u, the random variables X; — X and X, — X, are
independent. To show this, note that

Cov(X;— X, Xy — Xu) = Cov(Xy, X,) — Cov(Xs, Xyy) —Cov(Xy, X)) +Cov(X, Xy) =v—v—utu=0.

Note that despite these nice properties of the distributions, a realization (X;(w)):er, is not necessarily
path regular; it can “jump around.” It can be shown that there exists a Gaussian process (B;)ier, with
continuous paths such that B; = X; almost surely for each ¢ € R;. This is a nontrivial result and we omit
its verification. This process (By)icr . is called a Brownian motion.

A Lévy process is a process with stationary and independent increments. Brownian motion is the only
type of Lévy process that has continuous paths.

5 Martingales

5.1 Conditional expectation

Definition 5.1. Let uq and pe be two measures on a measurable space (2, F). We say ps is absolutely
continuous with respect to p; (denoted pe < pq) if for any A € F such that p1(A) = 0, we also have
u2(A) = 0. We say 1 and po are equivalent (denoted g ~ pg) if pg < po and po < 1.

Lemma 5.2. If f: Q — R U{oo} is a measurable function on the measure space (2, F, 1), then

p2(A) = /Afdul

is a measure that is absolutely continuous with respect to 1. If f is integrable, then us is finite.

Theorem 5.3 (Radon-Nikodym). Let p1 and pe be measures on a measurable space (2, F) such that o < puy
and py is o-finite. Then there exists a measurable function f :Q — Ry U {oco} such that

()= [

for all A € F. This function f is unique up to ui-a.e. equality.

Proposition 5.4 (Conditional expectation). Let (2, F, P) be a probability space, let G C F be a sub-o-
algebra, and let X € L*(Q0, F, P). Then there exists a unique Y € L*(Q,G, P) such that

E[1.Y] = E[14X]

for all A € G. We often denote Y by E[X | G]. Note that uniqueness in L'(2,G, P) allows for P-almost
everywhere equality.

Proof. Suppose first that X is a nonnegative random variable. Then p(A) := E[14X] is a finite measure on
G that is absolutely continuous with respect to P. By the Radon-Nikodym theorem (Theorem 5.3), there
exists a random variable Y € L!(Q, G, P) such that u(A) = E[14Y] for all A € G, which shows the existence
of E[X | G] when X > 0.

If X is instead an arbitrary random variable in L!(Q, F, P), then by the Radon-Nikodym theorem again
we have Y1,Ys € L'(Q, G, P) such that E[1,4Y;] = E[14X "] and E[14Y5] = E[14X ] for all A € G. Then
E[14(Y1 — Y32)] = E[14X], which shows the existence of E[X | G].
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To show uniqueness, suppose Y, Z € L*(Q, G, P) satisfy E[14Y] = E[14Z] = E[14X] for all A € G. Then
because {Y > Z} and {Y < Z} are in G, this equality implies

E[l{Y>Z}(Y - Z)] =0,
B[ly<z(Z—Y)] =0.

However, these are expectations of nonnegative random variables, so they are both zero only if Y = Z almost
surely. O

A random variable that equals E[X | G] almost everywhere is called a version of E[X | G].
Definition 5.5. Let X € L!'(Q,F,P), let Z be a random variable on (2, F, P), and let G C F be a
sub-o-algebra. Then we define

E[X | Z] := E[X [ 0(2)],
where we recall that o(Z) := {Z7Y(B) : B € B(R)}. For A € F, we define
P(416) = ElL4 | 6],
P(A] Z):=E[14|0o(2)].
Proposition 5.6. Let X,Y € L'(Q, F, P) and G C F be a sub-c-algebra.
a) If X is G-measurable, then E[X | G] = X. In particular, Elc | G] = ¢ for any constant ¢ € R.
b) ElaX +Y |G] =aE[X |G|+ E[Y | G] for all a € R.
¢) EIX |G| >E[Y |G] as. if X >V a.s.
d) Tower property. E[E[X | G] | H] = E[X | H] for every sub-c-algebra H of G.
e) If Y is G-measurable and XY € L', then E[XY | G] =Y E[X | G].
f) If X is independent of G (i.e., the o-algebras o(X) and G are independent), then E[X | G] = E[X].
g) If G = {2,Q}, then E[X | G] = E[X].
h) If ¢ : R — R is convex such that ¢(X) € L', then E[p(X) | G] > ¢(E[X | G]) a.s.
Proposition 5.7. Let (Q,F, P) be a probability space carrying two o-algebras G and H. Then,
E[X |o(G,H)] =E[X | G]
for every X € LY(Q, F, P) such that o(X,G) is independent of H.

Definition 5.8. Let X be an extended random variable (taking values in R U {£o00}) on (2, F, P) and let
G C F be a sub-g-algebra. If E[X ] < oo, we define

E[X | G]:= lim E[X Ak | g].
k—o0
If E[X ] < oo, we define
E[X |G]:= lim E[XVk|G].
k——o0
Theorem 5.9. Let X1, Xo,... be a sequence in L*(2, F, P) and G C F be a sub-o-algebra.

a) (Conditional version of Beppo Levi’s monotone convergence theorem,)

If there exists Y € L' and a random variable with values in R U {00} such that Y < X,, /* X a.s., then
E[X, |G] /E[X | ] as.

b) (Conditional version of Fatou’s lemma)

If there exists Y € L' such that X,, > Y a.s. for all n, then
liminf E[X,, | G] > E[lim inf X, | g] a.s.
n—oo

n—oo

¢) (Conditional version of Lebesgue’s dominated convergence theorem)
If there exist X, Y € L' such that | X,,| <Y for alln and X,, — X a.s., then

E[X, | G] — E[X | G] a.s.
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5.2 Martingale definitions

Definition 5.10. A stochastic process on (2, F, P) is a family of random variables (X;);c; where I is a
nonempty index set. If I =N, we call (X,,),>0 a discrete-time stochastic process.

Definition 5.11. A sequence (F,),>o of o-algebras is a filtration on (0, F, P) if /o C F; C --- C F.

Definition 5.12. A stochastic process (X,,) is adapted to (F,,) if X,, is F,-measurable for each n > 0. It
is predictable with respect to (F,,) if X,, is F,_;-measurable for each n > 1.

Definition 5.13. Let (X,,),>0 be such that X,, € L*(Q, F,,, P); note that this implies that (X,,) is adapted
to (Fp)-

e (X,) is a martingale with respect to F, if E[X,41 | Fn] = X,, for each n > 0.

e (X,) is a submartingale with respect to F,, if E[X,, 11 | F,] > X,, for each n > 0.

e (X,) is a supermartingale with respect to F, if E[X,,+1 | Fn] < X, for each n > 0.

Be wary of the directions of the inequalities in the definitions of submartingales and supermartingales.

Lemma 5.14. Let (X,)n>1 be a martingale with respect to (Fp)n>0. If m < mn, then E[X,11 | Fn] = X
In particular, E[X,,+1] = E[X(].

Proof. By repeated use of the tower property of conditional expectation (Proposition 5.6),

E[Xn—H | fm} = E[E[Xn—H | -Fn] | fm]
E[Xn \ fm]

E[Xm—i-l ‘ -Fm]
X,,.

Similarly,
' E[Xn+1] = E[E[Xp 41 | Fo]] = E[Xy] = -+ = E[X0].

Definition 5.15. A stochastic process (X,,)n>0 generates the natural filtration
FX=0(X0,X1,...,Xn) :=0({X; "(B): B€B(R),0<k<n}).

A stochastic process (X,)n>0 is a martingale, submartingale, or a supermartingale if it is one with
respect to its natural filtration (F.X).

Note that whether a stochastic process (X,),>0 is a martingale depends on the filtration F. Increasing
the filtration by “adding more information” may cause a martingale to no longer be a martingale.

Example 5.16.

1) Let Yp,Y1,... be a sequence of independent random variables in L (€2, F, P) such that E[Y,,] = 0 for all
n > 1. Then X, := Y | Y; is a martingale because

E[Xpi1 | FX] = E[Xn + Yoi1 | FY]
=X, + E[Y,41] X, is F:X-measurable; Y, is indep. of F
— X,

An example is Yp := 0 and P(Y,, = 1) = P(Y,, = —1) = 1/2 for n > 1; this gives the standard Bernoulli
random walk (X,,),>1.

41



2) Let Yy, Y3,... be a sequence of independent random variables in L!(Q, F, P) such that E[Y,] = 0 for all
n > 1. Then X, := Z?:l Y; is a martingale because X, is integrable due to the independence of the Y;,
and because

E(X,i1 | FX] = E[X, Y, 11 | FX]
= X, E[Y,i41] X, is F:X-measurable; Yy, is indep. of Fo
= X,.

3) Let X € L'(Q2, F, P) and let (F,),>1 be a filtration. Then X,, := E[X | F,] defines a uniformly integrable
martingale. [See Corollary 5.47.]

Example 5.17. Let P(Y,, =1) = P(Y,, = —1) =1/2forn > 0 and let X,, := )" . ,27"Y,,. Every path will
converge. However, although X,, := 3" -, % does not converge everywhere, we can show that it converges
an almost all paths. B

Definition 5.18. Let (X,,),>0 and (V;,)n>1 be two stochastic processes on (Q, F, P). Let AX,, := X,,—X,,_1
for n > 1. We define the martingale transform of X by V as

0 =0
(V- X)n =4 s -
Theorem 5.19. Let (X,,)n>0 be a martingale with respect to (Fp)n>0. Let (Vp)n>1 be Fy-predictable and
such that
E[|[V,AX,[] < 0o

forn>1. Then (V- X)p)n>1 is a martingale with respect to (Fp)n>0-

Proof. Note that for each fixed n > 1, (V- X),, is F,,-measurable because it is formed by adding, subtracting,

and multiplying random variables V; and X; for i < n, each of which is F,,-measurable; thus ((V - X)p)n>1

is adapted to (F,,),>1. Similarly, since we are given that V,,AX,, € L', we see that (V - X),, is also in L!.
Finally,

E[(V- X1 [ Fal

:E[Vn—i-lAXn-‘rl |]:n]+(VX)n Vi, Xs € Fpfori<n
=V, E[AX 1 | Fu]l + (V- X)) Vot1 € Fy, because (V,,)n>1 18 (Fp)n>o-predictable
=V -X),. (Xn)n>o0 is a martingale

5.3 Stopping times and Doob’s optional stopping theorem

Definition 5.20. A stopping time with respect to a filtration (F,),>0 on a probability space is an
extended random variable 7 : (2, F, P) - NU {00} such that

{r=n}eF,
for each n > 0.

The intuition is that 7 is the a time for stopping the process, and whether or not you stop at time n (the
event {7 =n}) depends only on the history up to and including time n (the o-algebra F,).

Lemma 5.21. In the definition above, the defining condition “{T = n} € F,, for eachn > 07 can be replaced
with the equivalent condition “{T <n} € F, for eachn >0.”
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Proof.

{r=n}={r<n}\{r<n-1}

n

{r<n}={r=1}

i=0
O

Definition 5.22. A stopping time 7 is finite if P(7 = co) = 0. A stopping time is bounded if there exists
N € N such that P(t < N) = 1.

Lemma 5.23. A stopping time T defines a stopping o-algebra
Fr={AeF:An{r=n} e F,,Vn € N}.
Note that the sets in F, do not necessarily belong to any F,.
Lemma 5.24. Let 7 and o be stopping times with respect to (Fp)n>0-
a) T+ o is a stopping time with respect to (Fp)nen-
b) TV o is a stopping time with respect to (Fp)nen-
¢) T No is a stopping time with respect to (Fp)nen-
d) Frrne = Fr N F,.
Corollary 5.25. If 7 < o are stopping times, then F. C Fo.
Proof. Note that 7 A ¢ = 7 and use part d) of Lemma 5.24. O
Example 5.26. Constants 7 = m € N are stopping times, since {7 = n} is either @ or Q.

Example 5.27 (Hitting time). Let (X,,)n,>0 be a stochastic process adapted to (F,,),>0 and let B € B(R).
Then
7:=inf{n e N: X,, € B}

is a stopping time because
n—1

{r=n}={X,eB}n [ {X:¢ B} e F.
=0

Lemma 5.28. Let (X,),>0 be a stochastic process adapted to (Fy,)n>0 and let T be a stopping time with
respect to (Fp). Then X;1¢ o0y is Fr-measurable. In particular, (X]))n>0 is adapted to (F,), where
X:L- = Xnnar-

Proof. We would like to show that {X;1;<) <t} is in F, for any ¢ € R. Referring to the definition of
F., we see that indeed, for any n € N,

{(Xolppeoy Stin{r =n} ={X, <t}n{r=n} c F,.

Let 0 := 7 An. By Lemma 5.24, it is a stopping time, and moreover, 15} = 1. By our work above,
X, is Fy-measurable. By Corollary 5.25, we have F, C F,, so X, is F,-measurable. O]

Corollary 5.29 (Elementary version of the optional stopping theorem). Let (X,,)n>0 be a martingale and 7
a stopping time, both with respect to (Fp)pn>0. Then (X )n>0 i a martingale. In particular, E[X,] = E[X(]
if T is bounded.
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Proof. If V;, := 1{7>py, then
X7 = Xo+ (V- X),

because for any realization 7(w) € N of 7, we have

T(w)An

XO + (V ! X)n = XO + Z AXZ = X‘r(w)/\n~
=1

By Theorem 5.19, (X7),>0 is a martingale.
If 7 is bounded, then there exists N € N such that 7 =7 A N. Thus,

E[X'r] = E[XT/\n] = E[XT/\O} = E[X()],
where the second equality is due to Lemma 5.14 and the fact that (X7),>0 is a martingale. O

Theorem 5.30 (Doob’s optional stopping theorem). Let (X,,)n>0 be a martingale and let o < 7 be bounded
stopping times, all with respect to (Fp)n>0. Then

E[X, | F,] = X,.

In particular,
E[X,] = E[X0].

Proof. Pick N € N such that ¢ <7 < N. We have already shown that X, is F,-measurable (Lemma 5.28).
We just need to show
E[X 14] = E[X,14]

for all A € F,.

WE

E[XT]_A] = E[XT]-Aﬂ{a:n}]

3
I
=)

I
M=

E[XT1an{o=n}]

3
Il
=)

I
M=

EEXN1an{o=n} | Fal] tower property (Proposition 5.6)

3
Il
=)

I
M=

E[E[XY | Fallan{o=n}] AeF, = An{oc=n}erF,

3
Il
=)

I
] =

E[XglAm{a:n}] Lemma 5.14

3
I
o

E[XglAﬂ{a':n}] go=n

I
1[M=

n=0
E[XG'/\T]-A]
E[X,14].
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5.4 Doob’s decomposition theorem

Theorem 5.31 (Doob’s decomposition theorem). Let (X,,)n>0 be a submartingale with respect to (Fp)n>0-
Then there exists a martingale (My)n>0 and a nondecreasing predictable process (Ap)n>0 such that Ag =0
and

Xn=M,+ A,.

Moreover, this decomposition is unique.

Corollary 5.32. Let X,, be a submartingale and V,, a nonnegative predictable process, both with respect to
(Fn)n>o0, such that E[|V,AX,|] < co. Then ((V - X)n)n>0 s a submartingale with Doob’s decomposition
(V- M)p)n>0 and ((V - A)n)n>o-

5.5 An example: one-dimensional random walk

Let Yy, Y1, ... be independent random variables in L!. Let Yy = 0 and
P(Yi=1)=p, P(¥i=-1)=1-p,

for all 7 > 1. Let
Xn = ZY—“
i=0

and define F,, := o(Yp,Y1,...,Y,,) so that (X,,) is adapted to (F,).
Fix A, B € N and define
B .—inf{n e N: X,, € {A, —B}}.

It is a stopping time because
n—1
(T4 =n} = (X, =A}U{X, = -BYn [ {Xi€[-B+1,A—1]} € F,.
i=1

Moreover, 748 is finite (see Lemma 5.33 below). Note that X, 45 = Algras_py — Blias__py. We
consider two cases: p=1/2 and p # 1/2.

If p=1/2, then (X,,) is a martingale. Since 7% A n is a stopping time (Lemma 5.24) that is bounded,
Doob’s optional stopping theorem (Theorem 5.30) implies E[X a,54,] = E[Xo] = 0 for all n. Because
—B < X,a8p, < A for all n, we may apply the dominated convergence theorem (Theorem 4.15) to get
E[X,4,2] = 0. Solving the system

0=E[X,a5]=A-P(X,a5=A)-B- ("% = -B)
1=P(X,a5 =A)+P(r*% =-B)

gives

_B _A
A+ B’ A+ B’

We now compute the expectation of 747 (still in the case p = 1/2). First, we note that (X2 —n),>¢ is
a martingale. It is clearly (F,)-adapted, and we have

P(rtP = A) pP(r*P = -B)

E[X2 —n | Foo1] = E[(Xno1 + Yn)? = n | Fuol
=E[X2 | 42X, 1Yo+ Y2 —n| Fui]

=X2_| —n+2X, 1 E[Y, | Fooi] +EY | Fril X,,_1 is F,_1-measurable
=X} | —n+2X, 1 E)Y,] + E[Y,]] Y,, is indep. of F,,_1
=X2 , —n+0+1

=Xp_ 1 —(n—1).

45



We may apply Doob’s optimal stopping theorem (Theorem 5.30) to (X2 — n) to get

E[X2%45,,] —EF*P An] =E[X245,, -5 An] =0.
The monotone convergence theorem (Theorem 4.11) gives E[r4% A n] — E[r48] as n — oo, and the
dominated convergence theorem (Theorem 4.15) gives E[X2, 5, ] — E[X2, z] as n — 00, so we have

E[r*58] = E[X2, 5]
= AQP(XTA,B = A) + BQP(TA’B = —B)

_ 4B B4
T A+B A+B
= AB.

We now examine the hitting times
T4 :=inf{n >0: X,, = A},
7_p:=inf{n >0: X, = —B},
still in the case p = 1/2. Note that 748 = 74 A7_p. We have

B
 A+B

IZP(TA <OO) ZP(TA <T_B) :P(XTA,B ZA)

for any choice of B. Letting B tend to infinity shows that P(t4 < co) = 1. A similar argument shows that
Tp is also finite.
However,

E[r4] > E[r4P] = AB

for any choice of B. Letting B tend to infinity shows that E[74] = oco; similarly, E[rg] = co. Thus, 74 and
Tp are examples of random variables that are almost everywhere finite but not integrable.
We now consider the case p # 1/2. We claim (Z,,)n>0 is a martingale, where

X
1 . n
Ly = <p) .
p

Indeed, it is (F,)-adapted, and

(1 _p)X'rL
p

ElZ,| Fn1] =E

fnl] X,_1 is F,,_1-measurable

1—p\™
p> ] Y,, is indep. of F,_1

By Doob’s optional stopping theorem (Theorem 5.30), 1 = E[Zy] = E[Z,4,8,] for all n. By the dominated
convergence theorem (Theorem 4.15), we have E[Z,4,2] = 1. Solving the system

L:Ewﬁﬁ]:<1pp>APu;&B:A)+<1pp>_BPﬁAB=—B)

1=P(X;a5=A)+P(r*P =—-B)
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gives

B A
(1—71’) 1 (1—p> 1
P P
P(XTA,B :A):T7 P(X A,B :—B):T
1-p 1-p
P P
We now compute the expectation of 745, Note that (W,,),>0 is a martingale, where

W, =X, —n(2p—1)

because
E[Wn | ]:n—l] = E[Xn (2p - ) | Fn— 1]
=X,-1—-n(2p—1)+E[Y, | Fr-1] X, _1 is F,,_1-measurable
=X,-1—n(2p—1)+E[Y,] Y, is independent of F,,_;
=Xp1—n@2p-1)+(p—(1-p))

= Xpo1—(n—1)(2p—1)

= Wn-1.
Again by Doob’s optional stopping theorem (Theorem 5.30), we have
E[X,a5x] — 2p — DEFTYP AN =E[X 45,0, — 2p— 1B An)] =0.

As before, the dominated convergence theorem (Theorem 4.15) and the monotone convergence theorem
(Theorem 4.11) give E[X, 4.5,,] — E[X,4,5] and E[r48 A n] — E[r4 5] respectively, so we have

Blr4®) = L B[X,an]= | 4 (%)B_l -B (1%0)“‘_1

2p_1 2p_1 (1;]0)14+B_1 (1;p)A+B_1
p

Finally, we examine the hitting times 74 and 7_p. Note that 7_p > B because it takes at least B steps
to reach —B from the origin. Thus, 7_p tends to infinity with B. This implies

P(rg <o0)= lim P(t4 <7_p)

B—oo
= Jim P(r*F = 4)
e
(555" -
_ 1 ) p>1/2,
(1%,) p<1/2.

Lemma 5.33. The stopping time 748 defined above is finite, i.e., P(t4F < 00) = 1.

5.6 Doob’s upcrossing inequality

Proposition 5.34. Let (X,)n>0 be a submartingale with respect to (Fp)n>0, and let ¢ : R — R be a convex
function such that ¢(X,) € L for each n. If at least one of the conditions below holds, then (o(X,))n>0 is
a submartingale.

a) X, is a martingale.

b) ¢ is nondecreasing.
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Proof. The conditional version of Jensen’s inequality gives

Elp(Xnt1) [ Fu] 2 0(E[Xns1 [ Fnl).

If a) holds, then (E[X,4+1 | Fu]) = ©(Xy), so (¢(X5))n>0 is a submartingale. If b) holds, then ¢(E[X, 41 |
Fnl) > o(X,,) because (X,,)n>0 is a submartingale and because ¢ is nondecreasing; thus (¢(X,))n>0 is a
submartingale. O

We now provide the setup for the theorem. Let (X,,),>0 be a submartingale with respect to (F,)n>0,
and let a < b be real numbers. We define

7 :=inf{n > 0: X, <a},
79 :=1inf{n > m : X, > b},
3 = 1inf{n > 7 : X,, < a},

Tok i=inf{n > mop_y : X,, > b},
Tok+1 = inf{n > Top 1 X, < a}-

Lemma 5.35. The 7, defined above are stopping times.

Proof. Clearly 7 is a stopping time (Example 5.27). If 7,, is a stopping time, then

n—1 n—1
{rm=nt=J|{m=0n{Xae8}n [ {X;¢5}| € Fu,
=0 j=t+1
where S := (—o00,a] if m is even, and S := [b, 00) if m is odd. O

We define the number of upcrossings by time n as

0 n < 7o,
max{m > 1: 79, <n} otherwise.

Bn(a,b) := {

This is the number of times that the process crosses from below a to above b in the time interval [0, n].

Theorem 5.36 (Doob’s upcrossing inequality). If (X,)n>0 s a submartingale, then

Elfn(a,)] < 7= El(X, - )]

Proof. We claim (Y,,),>0 is a nonnegative submartingale, where Y, := (X,, — a)*. It is nonnegative by
definition, and Proposition 5.34 shows that it is a submartingale because the function z — (z — a)¥ is
convex. We have

{Xpn2>2b}={X,—a>b—a}={Y, >b—a},

{Xn <a}={(X, - a)+ <0} ={Y, <0}

This gives an important relationship between upcrossings in (X,,) and (Y;,).
ﬂr)f(av b) = 63;(03 b— a’)'

Because the number of upcrossings of a general submartingale can be transformed into an analogous function
of a nonnegative submartingale, proving the theorem reduces to showing

E[5a(0.0)] < 3 BIX.)

where (X,) is a nonnegative submartingale. Note that the nonnegativity of (X,,),>0 now implies X, ., =0

2k+1
for all £ > 0.
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We define
0 n<m,

V=41 Tom—1 <N < Tom,
0 mom<n< T2m+1-
This process takes the value 1 only when the process is in the process of crossing from below a to above b.

We claim (V,,)n>0 is predictable with respect to (F,)n>0. Since V,, takes only two values, it suffices to show
that {V,, =1} € F,_1. Indeed,

oo (oo}
(Vn=1}= U{mma<n<mm}={J{mema <n—1}0{nm <n-1}°) € Fo1.
m=1 m=1

We also claim
(V : X)n > bﬂn(oa b)

for each n. Indeed, we have

VX)), V, =0
(V- -X)p:= ( Jn—1
(V- X)not +AX, V=1
)X+ X+ X, Tok <M < Topt,
X+ X+ + X5, + X Tk <n < Topgo.
< 0Bn(0,0).

The second equality follows because we are only adding the differences AX,, on the upswings from 0 to b,
and cancellations simply leave the value at the top of the swing. The inequality holds because the number
of terms in the sum is less than £3,,(0,b) and because Xof > b for each k.

We are now equipped to finish the proof.

E[bBn(a,b)] <E[(V - X),] see above
i Vi(Xi — Xi—l)]

= Z E[Vi(X; — Xi-1)]

=L

= ZE[VZ E[(X; — Xi—1) | Fiz1l] (Vi)n>o is (Fp)-predictable, see above
i=1

<Y BEX; — Xi1 | Fica] E[X; — Xi1 | Fio1] > 0 and V; € {0,1}
i=1

= B[X, — Xo]

5.7 Convergence theorems

Theorem 5.37. Let (X1) be a submartingale that is bounded in L' (i.e., sup,||X,|1 < oo). Then there
exists a random variable X, such that X, — X almost surely, and || Xs|1 < sup,, || Xnl1-

Proof. Fix a < b. Then

E[(Xn —a)"] < E[|X,, — a|] < E[|X,[] + |a| < sup|| X1 + |a] < oo,
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for each n, so sup,, E[(X,, — a)] < co. Thus, using the fact that 3, (a,b) is increasing in n, we have

E[ lim Bn(a,b)} = lim E[5,(a,b)] monotone convergence (Theorem 4.11)
n—roo n—roo
E[(X, —a)t
< sup I b"_ aa) ) upcrossing inequality (Theorem 5.36)
< 0.

This implies
P( lim B,(a,b) = oo) = 0.

n—oo

If the limit of X,, does not exist, it must oscillate between its liminf and lim sup; however, we have just
shown that this almost never happens.

P(lim inf X, < limsup Xn> < Z P<lim inf X,, < a <b<limsup Xn> union bound
n—oo n—00 a,beQ n—oo n—00
a<b
< i =
< 3 P(Jim ulob) =)
a,beQ
a<b
=0.

Thus there exists some X, for which X,, = X, almost surely (e.g., X := liminf, . X,).
The final claim follows from Fatou’s lemma.

[ Xooll1 < liminf|| X, Fatou’s lemma (Theorem 4.13)
n—o0

S SupHXnHl-
n

O

Corollary 5.38. Let (X,,)n>0 be a uniformly integrable submartingale. Then there exists a random variable
Xoo € LY such that X,, — Xoo converges almost surely and in L*. Moreover, E[Xo | Fn] > X, for all n.

Proof. Theorem 5.37 gives the existence of X, such that X,, - X, almost surely. Theorem 4.38 shows
that X isin L' and that X,, - X in L1
Fix A € F,,. Then 14X, — 14X almost surely, and (14X,,)m>0 is uniformly integrable. Then,

E[14X] = lim E[14X,,] Theorem 4.38
m—r o0
> E[14X,]. E[14X,,]) > E[14X,] for m > n (submartingale)
By the definition of conditional expectation, we have E[X | F,,] > E[X,, | Fn] = Xp. O

Corollary 5.39. A submartingale (X,,)n>0 that is bounded from above converges almost surely.

Proof.

E[|X,|] = E[X;] +E[X,]
= 2E[X,] - E[X;] + E[X,]
= E[X] - E[X,]
< 2supE[X,] — E[X,] submartingale

< 0. (Xn)n>o0 is bounded from aobve

Thus (X,,),>0 is bounded in L', so Theorem 5.37 implies the desired result. O
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The following corollary consists of the analogues of the above results for supermartingales and martingales.
Corollary 5.40.
o A L'-bounded supermartingale converges almost surely.

o A uniformly integrable supermartingale (X,,)n>0 converges almost surely and in L' to a random variable
Xoo € LY. Moreover, E[Xo | Fn] < X, for all n.

e A supermartingale that is bounded from below converges almost surely.

o If (X,)n>0 is a uniformly integrable martingale, there exists Xoo € L' such that X,, — Xo almost
surely and in L*. Moreover, E[Xy | Fn] = X,, for all n.

Corollary 5.41. Let (X,)n>0 be a submartingale that is bounded in LP (i.e., sup,, || Xn||, < o0) for some
p > 1. Then there exists a random variable Xoo € L' such that X, — Xoo almost surely and in L'.

Proof. Corollary 4.40 implies that (X,,)n>0 is uniformly integrable, so we may apply Corollary 5.38. O
Theorem 5.42. If (X,,)n>0 is an L?*-bounded martingale, then it converges in L>.
Theorem 5.43. If (X,,),>0 is an LP-bounded martingale, then it converges in LP.

Example 5.44. Let Y7,Y5,... be random variables such that P(Y,, = 1) = P(Y,, = —1) = 1/2 for all n.

Consider (X,,),>0 where
"y,
X, = f
k=1

It is a martingale. Moreover,

" E[Y?] E[Y;Y}]
E X2 § k 2 IR
k=1 1<j<k<n

"1
- Z = independence of the Y3

so the martingale is bounded in L?. By Corollary 5.41, we have the existence of X,, € L' such that
X,, — Xo almost surely and in L'. Theorem 5.42 also shows that it converges in L? as well.

Example 5.45. Let Y7,Y5,... be random variables such that P(Y,, = 1) = P(Y,, = —1) = 1/2 for all n.
The process (e¥17TYn), -4 is a strict submartingale, since E[e¥*] = cosh(1) > 1. So, we can normalize by
this factor to obtain a martingale (X,)n>0 where

el e¥r Y1 +---+Y, —nlog cosh(1)
X’ﬂ = e ——— — € n .

Ele1]  E[eY]

Note that this martingale is positive.

Since || X,||1 = 1 for all n, the martingale is bounded in L', so Theorem 5.37 implies the existence of
X such that X,, = X almost surely. [To arrive at this conclusion, we could also note that the process is
a supermartingale that is bounded from below, and then apply Corollary 5.40.]

We claim X, = 0. Indeed, note that Y7 + --- +Y,, — nlogcosh(1) is the symmetric random walk with
downward drift, and that exponentiating it gives the process (X, )n>0 which we showed converges almost
surely. Due to the downward drift, the only way this can happen is if Y1 +--- +Y,, — nlogcosh(l) - —oo
and X, — 0. [This is an indirect proof that adding downward drift to the symmetric random walk makes it
tend to negative infinity.] However, this shows (X,,),>0 does not converge in L' because E[X,,] = 1 while
E[X ] = 0. Consequently, the martingale is not uniformly integrable either (Theorem 4.38).
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Note that E[X,] = 1 for all n, while X,, — 0 almost surely. Since almost all paths tend to zero, more
and more paths are close to zero as n increases. However, at the same time, the height paths that are far
from zero get higher and higher as n increases, in order to maintain the average E[X,,] = 1.

This martingale is the discrete analogue of exponential Brownian motion.

Theorem 5.46. If X € L*(Q, F, P), then the collection
{E[X | G]: G C F is a sub-c-algebra}

is uniformly integrable.

Corollary 5.47. Let (F,)n>0 be a filtration on a probability space (Q,F,P). If X € LY(Q,F,P), then
X, :=E[X | F] defines a uniformly integrable martingale.

Definition 5.48. Given a filtration (F,)n>0, the union (J,,~, Fn is an algebra but not necessarily a o-
algebra. [Consider 2 := N and let F,, be the collection of subsets of {1,...,n} and their complements in N.
For any k, the set Ay := {2k} € Fo is in ;>0 Fn, but Uy Ar = {2k | k > 1} is not in any F,, because it
and its complement are both infinite.]

Thus, we define

\/]-"n::o' U]-"n

n>0 n>0

Theorem 5.49 (Lévy’s upward theorem). Let X € L*(Q, F, P) and let (F,)n>0 be a filtration. Let X,, :=
E[X | o] and X = BE[X | Foo] where Foo = \,,50 Fn- Then X, — Xoo almost surely and in L'

Proof. Since (X,,)n>0 is a uniformly integrable martingale (Corollary 5.47), there exists Xo, € L'(Q, Fao, P)

such that X,, = X almost surely and in L'.
Let A :=J,>¢ Fn; it is an algebra. For all A € A,

E[Xo14] = lim E[X,14] = E[X1,] Theorem 4.38
n—oo
= lim E[E[X | Fn]14]
n—oo
=E[X14]. 1, is F,-measurable for all large n

However, we want to show this equality for all A € Fo. Let M := {A € F: E[Xoo14] = E[X14]}. Tt is
a monotone class by the monotone convergence theorem (Theorem 4.11)). By the monotone class theorem
(Theorem 3.15), Foo C M, so indeed E[Xo14] = E[X14] for all A € Fu, showing X = E[X | Foo] =:
Xoo- O

Our study of martingales gives us a quick proof of the following theorem.

Theorem 5.50 (Kolmogorov’s zero-one law). Let X1, Xs, ... be a sequence of independent random variables.
We define the tail o-algebra by
g = m gn

n>0

where G, = o0(Xp+1, Xnt2,...). Then P(A) is either 0 or 1 for all A € G. In particular, G-measurable
random variables are constant almost surely.

Proof. Let FX := o(Xy,...,X,) be the natural filtration, and let FX := Voo FX. Note that

GCo(X1,Xs,...)=JFX cFL.

n>0

Moreover, G, := 0(X, 11, Xni2,...) is independent of FX := o(Xy,...,X,) for each n.
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For A € G,

Ly = BlLa | 72 G
= lim E[14 | FY] Theorem 5.49
n—oo
=E[14]. 1, is G,-measuarable; G, is indep. of F=X
This implies that P(A) is either zero or one. O
Theorem 5.51 (Reverse martingale convergence). Let Gy D G1 D -+ be a decreasing sequence of o-algebras

on a probability space (0, F, P) and let X € L*(2, F, P). Then
E[X [ G.] = E[X | ]
almost surely and in L', where G := nnzo Gn.

Proof. Let X,, := E[X | G,,] for each n > 0. Then X,,, X,,—1,..., X1, X0 is a finite martingale for each n > 1.
Letting 8, (a,b) be the number of upcrossings with respect to [a, b] for each finite martingale, we have

E[lim B,(a,b)] = li_>m E[8.(a,b)] monotone convergence (Theorem 3.15)
n—oo n o0
E[(Xo—a)t
< lim El(Xo —a)"] Doob’s upcrossing inequality (Theorem 5.36)

T n—ooo b—a

for any a < b. By the same argument in the proof of Theorem 5.37, there exists a G-measurable random
variable X, such that X, — X almost surely. [To see that X is G-measurable, note that X, =
lim, >, X,, shows that X is G,-measurable, but this is true for any m.] By Theorem 5.46, (X,)n>0 is
uniformly integrable, so X,, — X in L' as well.

For each A € G, we have

E[Xola]l = lim E[X,14] L'-convergence
n—oo
= lim E[X14] Xy =E[X | Gnl,
n—oo
thus X, = E[X | G], completing the proof. O

5.8 Strong law of large numbers

Lemma 5.52. Let X1, Xo,... be i.i.d. random variables in L', and let S, := 2?21 X, for eachn > 1. Then

Sn

n

E[Xy | Sn,Snt1,Snt2,---] =E[X1 ] Sn] =

Theorem 5.53 (Strong law of large numbers). Let X1, Xo,... be i.i.d. in L'(Q, F, P). Then
! zn: X, = E[X1]
n e % 1
almost surely and in L'.
Proof. Let Sy, := Y"1, Sp, let G, := 0(Sp, Snt1,...) for each n > 1, and let G := ﬂn21 G,.. Then

n

1 S,
DI
n n
=1
=E[X; | G, Lemma 5.52
— E[X; | G] Theorem 5.51
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almost surely and in L'.
Now note that

E[X; | G] = lim &
n—oo N
X e+ X1 X+ X

= lim +

n— oo n n

= lim ——— first term vanishes as n — oo
n—oo n

is 0(Xpm, Xmy1,...) for any m > 1, so it is [, 0(Xm, X1, - . .)-measurable. By Kolmogorov’s zero-one
law (Theorem 5.50), E[X; | G] is constant [almost surely], so it must be E[X]. O

5.9 Maximal inequalities

Theorem 5.54 (Doob’s maximal inequality for probabilities). If (X,,)n>0 is a submartingale and A > 0,
then

A- ‘P<I]£1<a)()(]C 2 )\) S E[an{maxkgn sz)\}] S E[X;_]

Proof. The second inequality is clear, so we only show the first inequality. Let 7 := nAinf{k € N: X} > A}.
Then,

E[X,] > E[X,] (X,,) is a submartingale
= E[XTA 1{maxkgn X 2)\}] + E[XTA 1{makan Xk,<)\}]
> A P(r}&ax)(;€ > A) + E[Xr, L maxg <, Xp<A}) def. of 7
<n =
=\ P(??XX/% > )\> + E[an{manSn X<} T) = n in this event
Subtracting the last term from both sides gives the first inequality. O

Corollary 5.55. If (X,)n>0 s a martingale, X > 0, and p > 1, then

E[| X |7]
AP

P(max|X;~C > /\> <
k<n
Proof. By Proposition 5.34, (|X,,|”)n>0 is a submartingale, so we may apply Theorem 5.54. O

Lemma 5.56. For any a,b > 0, the following hold.
b
alogb < aloga + >
b
alogt b <alogta+ -

where log¥ (z) := (logx)™ denotes the positive part of log x.

Theorem 5.57 (Doob’s LP maximal inequality). Let (X, )n>0 be a nonnegative submartingale. We clearly
have the lower bound
|2

max X},
n

> (| Xanllp
p

for any p > 1. However, we also have the following upper bounds.

1) If p> 1, then

p
X < —|| X0,
] < 20,
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2) For p =1, we have

max Xy

e
< — (14 || X,log™ X,
nax Xp| < (14| Xnlog" Xall1),

where log™ x := (logx)™ denotes the positive part of log .
Proof. Let Y := maxy<, Xy and let Y,,, := Y A m. Theorem 5.54 implies
AP(Y > A\) <E[X,1gy>ay).

Thus,
AP(Y > A) < E[X, 1y, >0

because if m < A then the probability on the left-hand side is zero and the inequality holds, and otherwise
dm>AthenY,, >\ < Y >\

1) Let p > 1, and assume E[X?] < oo (otherwise, the inequality holds immediately). Note the identity

xr o0
xP :p/ )\p_ld)\:p/ Lo APl dA.
0 0

Applying this to z :=Y,, and taking the expectation gives

E[YP] = p/ P(Yy, > MAP7LdA Fubini (Theorem 4.16)
OOO
< p/ E[an{ymzk}])\p_Q dX see beginning of proof
0
Y
=pE|X, / P2 dA] Fubini (Theorem 4.16)
0
p _
= E[X, Y2
1 1
< Ll||Xn||p||YTg*1||q where ¢ is s.t. = + — = 1; Holder’s inequality (Theorem 4.19)
b= p q
p
= ]leXanE[Yfz]l/q- (p—1g=p

Dividing both sides by E[Y,2]'/4 gives ||Y,,|, < 7271 X llp- Since this holds for each m, taking m — oo
and using the monotone convergence theorem (Theorem 4.11) gives [[Y[[, < S5 (| X .

2) Assume E[X,, logt X,,] < co (otherwise, the inequality holds immediately).

E[Ym]lE[/Ymd/\] —1
0

= / P(Y,, >N dx—1 Fubini (Theorem 4.16)
0
o0 1 1
g/ P(Y > \)dA /P(sz)\)d)\g/d)\zl
1 0 0
<1
< / X E[X,1gy, > dA see beginning of proof
1
Ym, 1
=E Xn/ X dA Fubini (Theorem 4.16)
1
= E[X,, logt ¥},]

E[Yo]

Lemma 5.56

< E[X,log" X,,] +
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Rearranging gives E[Y,,,] < 4 (1+E[X, logt X,,]). Letting m tend to infinity and applying the monotone
convergence theorem (Theorem 4.11) gives

€

E[Y] < : (1+E[X, log" X,,]).

6 Markov chains

6.1 Kernels

Definition 6.1. Let (Q,F) and (E,€) be measurable spaces. A mapping K : Q,& — Ry U {oo} is a
stochastic kernel from (Q, F) to (E, &) if

a) w— K(w,A) is a F-measurable random variable for each A € £, and
b) A— K(w,A) is a measure on (E,€) for each w € Q.

Example 6.2. If Q := {1,...,M} and E := {1,..., N} each with the discrete o-algebra, then to define a
stochastic kernel it suffices to determine K (m,{n}) for each m € Q, n € E (due to the second condition in
the definition of stochastic kernel). Thus the stochastic kernel can be represented as a matrix.

Example 6.3. Let k : Q@ x E — Ry U {oo} be a F ® £-measurable function, and let v be a measure on
(E,&). Then

K(w,A) = / k(w,e) v(de)
A
is a stochastic kernel.

Definition 6.4. A stochastic kernel is finite if A — k(w, A) is a finite measure (i.e., k(w, F) < 0o) for each
w € Q. A stochastic kernel is a transition probability kernel if A — k(w, A) is a probability measure
(i.e., k(w, E) =1) for each w € Q.

Definition 6.5. Let (Q,F, P) be a probability space and let G C F be a sub-c-algebra. A regular
conditional probability of P with respect to G is a transition probability kernel @Q : (2, G) — (Q, F) such
that

Q(,A)=P(A|G)

P-almost surely for all A € F.

In general, the conditional probabilities P(A | G) do not necessarily satisfy the conditions of being a
kernel.

Lemma 6.6. If we assume P has a regular conditional probability QQ with respect to G, then for every
X e LY(Q,F, P),

QX = /X(w’)Q(-,dw’)
equals E[X | G] P-almost surely.

Definition 6.7. Let X : (w, F, P) — (R, B(R)) be a random variable, and let G C F be a sub-c-algebra. A
regular conditional distribution of X given G is any transition probability kernel @ : (©2,G — (R, B(R))
such that

Q(,A)=PX cAlg)

P-almost surely for all A € B(R).

Theorem 6.8. Let X : (w, F,P) = (R,B(R)) be a random variable, and let G C F be a sub-c-algebra.
Then there exists a regular conditional distribution of X given G.
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Proof. Let g € Q and define
Cq:P(X§q|g)a
Qg ={Cy < C,}.

[In the definition of Q,, pick two versions of C, and C,.] Since {X < ¢} C {X < r} if ¢ < r, we have
Qg = Q P-almost surely. Let
Qo == ﬂ Qqr-

q,r€Q
q<r

Then Q¢ = Q P-almost surely as well.
For all w € Qg, the function ¢ — Cy(w) is a nondecreasing function Q — [0, 1]. If we define for ¢ € R and

w € Qg the function

Ci(w) == (11161% Cy(w),
Nt

then ¢ — Cy(w) is a cdf for some distribution Q(w, -).
Then, -
Qw, 4) =19, (w)Q(w, A) + Lag (w)do(A)
is a regular conditional distribution of X given G. Note that the choice of the Dirac measure is arbitrary; it

can be replaced by any probability measure. O

6.2 Definition and basic properties

Let I be a countable state space. For simplicity we will implicitly assume [ is either N or of the form
{0,1,...,n} for some n.

Definition 6.9. A vector ();)ics is a distribution if A\; > 0 for all i € I and ), ; A\; = 1. A matrix
(pi,j)i,jer is stochastic if each of its rows is a distribution.

Definition 6.10. A stochastic process (X, )n>0 on a probability space (Q, F, P), with X, :  — I for each
n, is a Markov chain with initial distribution A and transition matrix p if

a) P(Xo=1)=M\;, and

b) P(Xpt1 = ting1 | Xo =0, X1 =i1,..., X =in) = Pi, iy, for any n >0 and g, ... i, € I.

We say (X, )n>0 is Markov (A, p).

Theorem 6.11. A discrete-time stochastic process (X, )n>0 s Markov(\, p) if and only if
P(Xo =0, X1 =11, , X =in) = NigDig,ir *** Pin_1,in

for allmn >0 and ig,...,in, € I.

Proof. If (X,,)n>0 is Markov (A, p), then

P(Xg=1tgy...,Xpn =tn)
:P(XO :Zo)P(Xl :il IXO :%O)P(Xn:Zn |X0 :io,...,Xn,1 :Z‘nfl)
=P(Xog=1io) - P(X1=1i1| Xo=140)  P(Xp=tn | Xno1 =tn_1)
= NigPiois =" Pin_1,in-
The other direction is clear. O

Corollary 6.12. For every initial distribution A and stochastic matriz p, there exists a Markov (A, p) process.

Proof. Apply the Kolmogorov Extension Theorem (Theorem 3.46). O
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Theorem 6.13 (Markov property). Let (Xp)n>0 be a Markov chain. If P(X,, =1i) > 0, then, conditional
on the event {X,, = i}, the process (Xm+n)n>0 is Markov(d;,p) and is independent of (Xo, ..., Xm).

Let the initial distribution A be interpreted as a row vector. Then Ap is a row vector with entries
(Ap); == >, Aipi,j- We can also multiply p with itself.

Py = 0ij identity matrix
Pll,j =DPij

2
Pij = Zpi,kpk,j
k

3 . 2 )
Pij = Zpi,kpk,y
k

This proves the following result.
Lemma 6.14. If (X,),>0 is Markov(A, p), then
P(Xy =j) = (Ap");,

for allm > 0.

6.3 Class structure

Definition 6.15. We let P; denote the probability measure P(- | Xy = i), and let E; denote the expectation
with respect to this measure. We say i leads to j and write ¢ — j if P;(X,, = j for some n > 0) > 0. We
say ¢ communicates with j and write ¢ <> j if i — j and j — ¢. By definition we have i <> i.

Theorem 6.16. For i # j, the following are equivalent.

(i) i —j.

(1) DiiyDirsis " Pin_v,j > 0 for somen >1 and iq,...,0n—1 € 1.
(ii) pi; > 0 for somen > 1.

Definition 6.17. Since communication is an equivalence relation on I, it induces a partition of I into
communicating classes. A communicating class C' C I is closed if i € C and i — j together imply j € C.
A state 7 € I is absorbing if {i} is a closed class. We call a Markov chain or transition matrix irreducible
if all of I is a communicating class.

6.4 Hitting times and absorption probabilities
Definition 6.18. Let A C I. We define the hitting time of A by

H# :=inf{n>0:X, € A}.

We also define

Theorem 6.19.
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a) The vector of hitting probabilities (hf‘)iel 18 the minimal nonnegative solution to the system of equations

BA _ 1 1€ A,
¢ Zjelpivjh? Z §é A

b) The vector of expected hitting times (klA)ie[ is the minimal nonnegative solution to the system of equations

BA _ 0 1 €A,
' 1+Zj¢Api,jk3‘4 i%A.

Proof. We first prove (hf');cr is indeed a solution to the system. By definition, h! =1 for i € A. If i ¢ A,

then conditioning on X; and applying the Markov property (Theorem 6.13) gives the appropriate expression.

BA =30 P(Xy = f)P(HA < o0 | Xy = j) = > pighit
jel gel

We now show that (h#);c; is smaller than any other nonnegative solution (z;);c; to the system. For

i € Awehave h{! = 2; = 1. For i ¢ A, we have

T =) P,

1€l
= E Digjy + E Di,j1 Ty
J1€EA j1¢A

=P(X1 € A)+ Y |Piju | D Pivn+ D PininTin

igA j2€4 jagA
=P(X1 € A)+ P(X1 ¢ A, Xs € A)+ D DijuPirinTin
Ji1,J2¢A

:PZ(XleA)-F+PZ(X1¢A,,X7L,1¢A,X”€A)+ Z Pij1 " Pin—1,inLjn
J1yeesn @A

Because z; > 0 for all j € I, the above implies
2> P(X1 € A) 4+ + P(X1 ¢ A, Xy 1 ¢ A X, € A) = P(H* <n)

for all n > 1. Taking the limit as n — oo gives x; > h#.

The proof for (k{*);cs is analogous. To see that (k{);cr is a solution to the system, note that by definition

k =0 for i € A, and for i ¢ A we condition on X; and apply the Markov property (Theorem 6.13) as
before.

kit = ZPi(Xl = HE[HY | Xy =j] = Zpi,j(l +hN =1+ Zpi,jsz =1+ Zpi,jkfl-
jer jel jel igA

We now show that (k;“),e ;7 is smaller than any nonnegative solution (z;);cs to the system. If i € A we
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have k* =z, = 0. For i ¢ A,

wi=1+ Y pijwj
1gA

=P(H > 1)+ > |piji | 1+ Y Pirinis

1gA J2gA
= PZ(HA >1)+ Pi(HA >2)+ Z Di,j1Pj1,52T g2
J1.j2¢A

=PH*> 1)+ +PH*>n)+ > pij - PiernTi,
Tlseens Jn¢A

Because z; > 0 for all j € I, the above implies
i >y Pi(H" > k)
k=1

for all n > 1. Taking the limit as n — oo gives

6.5 Strong Markov property

Theorem 6.20 (Strong Markov property). Let (X, )n>0 be Markov(A,p) and let T be a stopping time with
respect to the natural filtration (F.X )n>o. If i is such that P(T < oo, X, = i) > 0, then, conditional on the

n

event {1 < oo} N{X, =i}, the process (Xrin)n>0 is Markov(d;, p) and is independent of FX.
6.6 Recurrence and transience
Definition 6.21. A state ¢ € [ is recurrent if

P;(X,, =i for infinitely many n) = 1,

and transient if
P;(X,, = i for infinitely many n) = 0.

Theorem 6.25 shows that all states are either recurrent or transient.

Definition 6.22. We define

TZ»O::O
T, =T! :=inf{n >1:X, =i}
T7 :=inf{n > T} +1: X, =i}

" : inf{n >TF ' +1:X, =i}
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In short, TF is the time of the kth visit to state i strictly after time 0. We also define

(3

U Y N
Sk.=2{ ! ! ) time between visits to state ¢
0 otherwise.
Vi = Z 1ix,=i} number of visits to state ¢
n>0
fi = Pi(T; < 00) probability of visiting state ¢ if starting there.

Lemma 6.23. For k > 2, conditional on Tik_1 < 00, the random variable S¥ is independent of ]-'%(k,l, and
P(SF =n|TF " < 00) = Py(T; = n).

Proof. In the event {Tik_1 < oo}, we also have X x-1 = i. Therefore, by the strong Markov property
(Theorem 6.20), conditional on {T#~! < oo}, the process (Xpr-14,)
of ]-";,ik,l. Noting that Sf =inf{n>1: XTik—1+7L = i} finishes the proof. O

n>0 is Markov(d;, p) and is independent

Lemma 6.24.
a) Bi[Vi] = anopﬁr
b) P,(V; > k)= fF for each k > 0.
Proof. To prove a), note that
BV =Ei|> lx,—iy| =D P(Xn=14)=> pl
n>0 n>0 n>0

To prove b), we use induction. Note that Xo = i implies {V; > k} = {TF < oo} for all k > 0. [Note that
V; counts the visit at time 0, while T does not.]
Clearly the statement we are asked to show holds for £ = 0, 1.

Pi(Vi>0)=1=f),
Pi(Vi > 1) = Py(T; < 00) = fl.

Suppose the statement holds for some fixed £ > 2. We show it also holds for k£ + 1.

Pi(Vi > k+1) = P(TF! < o0)
= P(TF < 00,55 < 0)

= f;fF Lemma 6.23 and inductive hypothesis

Theorem 6.25.
a) If Pi(T; < 00) =1, then i is recurrent and ), -, p}; = 0o.
b) If P(T; < o0) < 1, then i is transient and 3, -, p}; < 0o.

In particular, every state is either recurrent or transient.
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Proof. If P;(T; < 0o) =1, then Lemma 6.24 implies
Pi(V; = 00) = lim Py(V; > k) = lim fF=1,
k—o0 k— o0
which in turn implies that ¢ is recurrent and
St = BV = .
n>0
If P,(T; < 00) < 1, then
1
no_ . N — . . — k —
Sopl =BV =) P(Vi>k) =) ff= =7, <%
n>0 k>0 k>0

This implies P(V; < 00) = 1, i.e., 7 is transient. O

Theorem 6.26. The states of a communicating class are either all recurrent or all transient.
Proof. Let i and j be the states of a communicating class, and suppose i is transient. There exists m,n > 0
such that pj”; > 0 and p7; > 0. For all k > 0 we have prthtn > p?jp?dp;ji, so the transience of i implies

1
k +k+
DoPhs S s P <o,
k>0 pZJpJ,l k>0
i.e., j is transient. Thus, the states of a communicating class that contains a transient state will all be

transient. Otherwise, all states of the class are recurrent. O]

Consequently, we can call a communicating class recurrent or transient based on what kind of states it
contains.

Theorem 6.27. A recurrent communicating class is closed.

Proof. We prove the contrapositive. Suppose C is a communicating class that is not closed. Then there
exists ¢ € C and j ¢ C such that i — j, i.e., P;(X,, = j) > 0 for some m > 0. Then,

P,(X,, = j and X,, = i for infinitely many n) =0 j¢cC
= P;(X,, =i for infinitely many n) < 1 Pi(X,, =j) >0,
implying ¢ is not recurrent. O

Theorem 6.28. Every finite closed communicating class is recurrent.

Proof. Let C be a finite closed communicating class, and let (X,,),>0 be a Markov chain starting in C. Then
there exists a state i € C such that

0 < P(X,, = for infinitely many n) = P(X,, =1 for some n)P;(X,, = ¢ for infinitely many n),

where the inequality is by the definition of a closed communicating class, and the equality is due to the
Markov property. This implies P(X,, =i for some n), so i is recurrent. O

Theorem 6.29. Assume p is an irreducible and recurrent transition matrixz. Then for every initial distri-
bution A, we have P(T; < o00) =1 for all j € I.

Proof. Since P(T; < oc0) = Y ..; MiPi(T; < 00), it suffices to show that P;(T; < oo) = 1 for each i € I.
Choose m such that pi”; > 0.

icl

1 = P;(X,, = j for infinitely many n)
= P;(X,, = j for some n > m+1)
= ij(Xn =jforsomen>m+1|X,, =k)P;(X,, =k)
kel
= ZPk(Tj < 00)py-
kel

Sir)lce Zkelpg’fk = 1, we must have P(T; < o0o0) = 1 for every k such that Py > 0; in particular, P(T; <
o) = 1. O
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6.7 Recurrence and transience of random walks

Example 6.30 (One-dimensional random walk). To be consistent with Section 5.5, we will use p to denote
the parameter of the random walk. It should not be confused with the transition matrix p.

Let [ :=7Z,0 < p <1, piiy1 == q, and p;;_1 = 1 — p for each i. The transition matrix is clearly
irreducible.

We now determine whether the states are transient or recurrent. Note the equation

1 1
Po(To < OO) = §P1(T0 < OO) + §P_1(TO < OO)

Case 1. p = 1/2. By our results for hitting times in Section 5.5, we have P;(Tp < c0) = P_1(Tp < o0) = 1.
By the equation above, we have Py(Ty < 00), proving that the state 0 here is recurrent, and thus
all states are recurrent.

Case 2. p # 1/2. If p < 1/2, then P_1(Tp < o0) < 1, while if p > 1/2, then P;(Tp < o0) < 1 (again, see
Section 5.5). In either case, we have Py(Ty < 00) < 1, proving that 0 is transient, and thus all states
are transient.

6.8 Invariant distributions

Definition 6.31. A measure A [not necessarily a probability measure] on I is said to be invariant with
respect to a transition matrix p if Ap = A.

Theorem 6.32. If (X,,),>0 is Markov(X,p) and X is invariant with respect to p, then for every m > 1,
(Xmtn)n>o0 s again Markov(A, p).

Proof. Since P(X,,, =1) = (Ap™); = \;, we have
P(Xm =19,... 7Xm+n = in) = /\iopio,il o Pn—1,n
for any n > 0 and ig,...,4, € I. O

Theorem 6.33. Let I be finite. Assume there exists i € I and a vector (m;)jer such that pj'; — m; as
n — oo for each j € I. Then (m;)jer is an invariant distribution.

Proof. Because I is finite, we can interchange the limit and the finite sum.
— 3 oo 13 noo__
Dom=2 lim piy = lim > pi; =1,
jerI jeI jel
so (mj)jer is a distribution. To see it is invariant, note that

m; = lim p!', = lim E o P = E lim p? ;= E T ”
J n—)oopl’-] n—00 pl’kpk’] n—)oopl’kpkﬂ kpk’]
kel kel kel

O

Example 6.34 (One-dimensional random walk). Consider the setup in Example 6.30. For any i,j € I
we have pi', — 0. However, the all-zero vector is not an invariant distribution (although it is an invariant
measure). This counterexample shows why the condition that I be finite is necessary in Theorem 6.33.

Definition 6.35. For i,k € I, we define the expected time spent in i between visits to k.

Ty —1
’yf = Eg [ Z 1{Xn,=i}] .

n=0

Theorem 6.36. If p is irreducible and recurrent, then the following hold for all k € I.

a) yF=1.
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b) v* = (vF)ier satisfies vFp = ~*.
¢) 0<F < oo forallicl.
Proof. Since 1;x, -} =0 for 0 <n < T} — 1 and Ex[1{x,—}] = 1, part a) is clear.
We now show part b). Note that {n < Ty} = {T}, < n — 1}¢ € FX |, we have by the Markov property

(Theorem 6.13)
Py(Xpo1 =16,Xp =j,n <Ty) = Pu(Xpn_1 =4,n < T)p; ;.

By recurrence,
P(Tk<OO,X0:XTk :k):P(Tk<OO):1,

so we have
Tie—1
7y = Ex [ > 1{Xn—j}1
n=0
Tk
=Ei|) 1{Xn_]}]
n=1
oo
=E|) 1{Xn—j}]—{n<Tk}‘|
n=1
=Y Pu(Xn =4,n<Ty)
n=1
=3 Pu(Xp1 =i, X = j,n < Tg)
i€l n=1
= Zpi,j Z Py(Xp—1 =1,n<Ty)
el n=1
oo
= Zpi,j Ep Z lix, =im<m,—1}
el m=0
=: Z’Yfpim
i€l
proving b).

For each i € I, there exist m,n > 0 such that pj and py , are strictly positive. Using parts a) and b),
we have the following two inequalities which together imply c).

> vepii > 0,
Epm <Ak =1
O

Theorem 6.37. Let p be irreducible and let A be an invariant measure such that A\, = 1. Then X\ > ~*. If
p is also recurrent, then \ = .
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Proof. For all j € I,

Aj = Z AiDij

i€l
=pej+ D NiDi
17k
=Phgt D D NioPisiaPinj
i1k ia€l
=Pk,jt Z Pk,iy Piy,j T Z iy Dig ir D j
i17#k i1,i2#k

=Prjt Y PhiPig Tt Y DriaPie i D)t D NiPisin e Ping),
i17#k i1, in—17k 11,.0in #k

for any n > 1. Ignoring the last term shows that for j # k,
N> Pu(X1=4,T,>1)++ Pu(X,, = 4, T > n).

Taking the limit on both sides as n — oo gives \; > vj’-“ when j # k. In the case j = k, we already know
>\k =1= ’ylkc.

If p is also recurrent, then A* is an invariant measure (Theorem 6.36), so 1 := A — ¥ is also an invariant
measure, and we have already shown that ;> 0 and pr = 0. For any given ¢ € I there exists n > 0 such
that pj'; > 0. Then,

0=pk = Py > mapis,
jeI
which implies p; = 0. O

Definition 6.38. Let m; := E;[T;] be the expected return time. We call a recurrent state i positive
recurrent if m; < oo, and we call all other recurrent states null recurrent.

Theorem 6.39. If p is irreducible, then the following are equivalent.
(i) Every state is positive recurrent.
(ii) Some state is positive recurrent.
(i1i) p has an invariant distribution .
If these statements hold, then m; = 1/m; for alli € I, and 7 is unique and strictly positive.

Proof. (i) = (ii) is clear.
(i) = (iii). If i € I is positive recurrent, then p is recurrent (Theorem 6.26) and +* is an invariant
measure (Theorem 6.36). Since

T;—1
jerl jel n=0

we see that m; := 'y;- /my; is an invariant distribution.
(iii) = (i). Fix any k € I. Because p is irreducible, there exists n > 0 such that m, = >, mip}'y, > 0.
If we let \; := 7; /7, then X is an invariant measure with A\ = 1. By Theorem 6.37, A > v*, so
mir = A —_— =< OO,
PPN
i€l iel

showing that k is positive recurrent.
If we know that all three statements hold, then we know p is recurrent, so Theorem 6.37 implies A = v*.
Replacing the analogous inequalities in the proof of “(iii) = (i)” with equalities gives 0 < mp = 1/my. O
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Corollary 6.40. If p is irreducible and I is finite, then p has a unique tnvariant distribution w that is strictly
positive. Moreover, all states are positive recurrent.

Proof. Since I is a finite closed communicating class, it is recurrent (Theorem 6.28), so (v¥);c; is an invariant
finite measure (Theorem 6.36). Normalizing by Y_,.; 7 gives an invariant distribution. O

Example 6.41 (Symmetric one-dimensional random walk). We use the setup in Example 6.30 with p = 1/2.
The transition matrix is irreducible and recurrent. The measure m; = 1 for all 4 € I is an invariant measure.
An invariant distribution would have to be a multiple of 7 (consequence of Theorem 6.37), but >, _; m; = oo,
so there exists no invariant distribution, and thus every state is null recurrent.

6.9 Convergence to equilibrium

Example 6.42. Let I have two states and let
101
P=11 ol

Then p*™ would be the identity and p>" ™! = p for all n. Clearly 7 := [1/2 1/2] is an invariant distribution
with respect to p. However, p}'; does not converge as n — oo for any i, j € I.

It turns out that the periodicity of the above example is the only issue preventing convergence of p”.
Definition 6.43. A state : € I is aperiodic if p}’; > 0 for all sufficiently large n.

Lemma 6.44. Let p be an irreducible transition matriz and i € I an aperiodic state. Then for any j, k € I,
P} >0 for all sufficiently large n. In particular, all states are aperiodic.

Proof. There exist m,£ > 0 such that p}; and ;') are strictly positive. Then p;”,j ntl > p;’zpfzpf ;> 0 for
all sufficiently large n. Taking j = k shows that j is aperiodic. O

Theorem 6.45 (Convergence to equilibrium). Let 7 be an invariant distribution of an irreducible aperiodic
transition matriz p. Let X be an initial distribution and let (X,)n>0 be Markov(\, p). Then

P(Xn = j) — T
as n — oco. In particular,
pﬁj — T
as n — oo.

Proof. Let (Y,,)n>0 be Markov(w, p) and independent of (X,,)n>0. Fix b € I and let
T:=inf{n>0:X, =Y, =b}.

We first show P(T < oo) = 1. To do this, we show that W,, := (X,,,Y,,) is a Markov chain on I x I with
transition matrix

ﬁ(i,k),(j,e) ‘= Di,jDk,¢
and initial distribution
w(i, k) = Nmg.

Since (X,)n>0 and (Y3,),>0 are independent and since p is aperiodic for all states in I, we have for all
i, kel

-~

Pli k), .0) = PijPie >0
for all sufficiently large n, implying that p is irreducible. Since p has the invariant distribution
%(i,k) =TTk,

Theorem 6.39 implies that p is positive recurrent, i.e., P(T < oo) = 1.
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Next we use a technique called coupling. We define the process

7, — X, n<T,
Y. n>T.

By the strong Markov property (Theorem 6.20), we see that (Z,,)n>0 is Markov(A, p).
To conclude, note that

PZ,=j)=PX,=jn<T)+P(Y,=4n>1T),
S0
|P(Xn :]) _7Tj| = ‘P<Zn :]) _P(Yn :J)‘
—|P(X, = jin < T) = P(Y, = j,n < T)|
<Pn<T)
—0
as n — oo. [The first equality holds because (X,,)n>0 and (Z,),>0 follow the same distribution, and because

7 is an invariant distribution for p and is the initial distribution for (Y;,),>0. The last inequality is simply
|P(ANB) — P(ANC)| < max(P(ANB),P(ANC)) < P(A)] O

6.10 Ergodic theorem

The ergodic theorem for Markov chains can be seen as a generalization of the strong law of large numbers.

Theorem 6.46 (Ergodic theorem). Let (X,)n>0 be Markov(\,p), with p irreducible, and let Vi(n) :=
im0 Lx—i-
Y Vi 1
(1
almost surely as n — oo. [This statement is still valid if m; = 0o, in which case the point of convergence

is 0./

b) If p is also positive recurrent and 7 is an invariant distribution, then

LS s = Yomati
k=0 el

almost surely as n — oo, for any bounded function f : 1 — R.

Proof. If p is transient, then V; := > - 1(x,—; is finite almost surely and m; = oo, so

Vi(n) < Vi 1

proves a) in this case.

Let p be recurrent and fix a state . Then P(T; < oo) = 1 (Theorem 6.25), and (X7 4n)n>0 1S
Markov(d;, p) and is independent of Xy, X1,..., X7, by the strong Markov property (Theorem 6.20). The
long-run proportion lim,_,« V;(n)/n of time spent in ¢ is the same for (X1, 4pn)n>0 and (X,)n>0, SO we may
assume \ = §;.

Let S¥ be as defined in Definition 6.22. The nonnegative random variables S}, S2, ... areii.d. (Lemma 6.23)
and E;[S¥] = m; for all k. We have

R A
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because the left-hand side is the time of the last visit to i before n. Similarly,

Sy gVitm) — pViln) 5
because the left-hand side is the time of the first visit to ¢ after n — 1. [Note that V;(n) counts the “visit”
to ¢ at time 0, while T does not.] Thus,

St 8™ n _Si4 48
Vi(n) = Vin) Viln)

By the strong law of large numbers (Theorem 5.53),

Sl4 - 8P
n

— m;

almost surely as n — co. Because p is recurrent, V;(n) — oo almost surely as n — oo. Thus our upper and
lower bound on n/V;(n) give

Vi(n) '

almost surely as n — co. Rearranging proves a).

Suppose (X, )n>0 has an invariant distribution (7;);er, and let f : I — R be a bounded function. Without
loss of generality we may assume |f| < 1. For any J C I, we have

n—1

IS s - ms| = |3 (Vifl”) - m)f(l)
k=0 i€l iel
SZ Vzin) . +Z ‘/172”) o
ieJ i¢J
Vi(n Vi(n
icJ igJ
ieJ ied i¢J iel
Vi(n) Vi(n)
= — il + T — + 2 I m=1
SQ ‘/zfln) — T +QZ771'~

By part a), Vi(n)/n — m; almost surely as n — oo for all i. Given € > 0, choose J finite so that ), ; mi < €/4.
Because J is finite, for almost all w € © we can choose an integer N(w) large enough so that for n > N(w)
we have

Z M — ;| < e/4.
‘ n
ieJ
Then for n > N(w) we have
n—1
1 .
EMLCEE Wt B
k=0 iel
proving b). O
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7 Poisson processes

Let S1,5s,... be i.i.d. Expon(A). Let T}, :==S1 + So + --- + S, for each n > 1. The Poisson process
with jump intensity A is defined as (N¢):er, where

Nt = Z l{TnSt}'

n>1

N, ~ Poisson(At).

T,, ~ Gamma(n, \) (density function Ae=*(At)"~1/(n — 1)!).

(Ni)ter has stationary increments (N; — N depends only on ¢ — s) and independent increments.

(N — At)ier is a martingale.
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