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Introduction

We would like to analyze data that is massive, high-dimensional, and/or complex.

Perspective Machine learning Statistics

Foundation Concentration principle (LLN) Likelihood principle
Approach risk minimization (model-free) maximum likelihood estimation (model-

based)
Goal prediction, generalization consistency, model selection, understand-

ing/explaining

Definition 0.1 (General principles). The following are rough descriptions of three important principles.

1. Likelihood principle. Everything is model-based. This allows us to derive theory, such as asymptotic
theory. It also provides the sufficiency principle (data reduction) which helps cope with massive data.

2. Concentration principle. We assume that data are noisy signals, and we want to recover the signal
given the data. This inverse problem can be approached due to the concentration phenomena, which,
loosely speaking, states that averaging over many samples gets rid of the noise. See the law of large
numbers (Theorem 1.6).

3. Regularization/parsimony principle. If two explanations are equally good at explaining a phe-
nomenon, we prefer the simpler one. We always seek dramatically simplified models to analyze complex
data.

Warning: Many techniques that are good for “big” data may not be good for “small” data, e.g. the
Naive Bayes classifier.

Warning: All the simple models that we use are wrong; true models are complex. However, simple models
may still be useful for inference, prediction, etc.
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1 Theoretical foundation

1.1 Statistical models and parameter spaces

Definition 1.1. A statistical model P is a set of probability distributions indexed by a parameter space
Θ.

P := {pθ : θ ∈ Θ}.

A statistical model is called a parametric model if it can be indexed by a finite-dimensional parameter
space Θ. If no finite-dimensional parameter space can index the model, then it is called a nonparametric
model.

Example 1.2 (Gaussian model).

P :=

{
pµ,σ2(x) :=

1√
2πσ2

e−
(x−µ)2

2σ2 , µ ∈ R, σ2 > 0

}
.

Here, θ = (µ, σ2)> ∈ Θ := R× R+, so this is a parametric model.

Example 1.3 (Sobolev space).

P :=

{
p(x) continuous density and

∫
p′′(t)2 dt <∞

}
.

This is a nonparametric model.

1.2 Limit theorems

Definition 1.4. A sequence of random variables (Xn)n is said to converge in probability to a random
variable X if for any ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0.

We denote this by Xn
P−→ X.

Definition 1.5. A sequence of random variables (Xn)n (with corresponding cumulative distribution func-
tions FXn) is said to converge in distribution to a random variable X (with cdf FX) if for every x at
which FX is continuous,

lim
n→∞

FXn(x) = FX(x).

We denote this Xn
D−→ X.

Theorem 1.6 ([Weak] Law of Large Numbers). If X1, . . . , Xn are i.i.d. random variables with expectation
µ, then

Xn :=
1

n

n∑
i=1

Xi
P−→ E[Xi] =: µ as n→∞.

Theorem 1.7 (Central Limit Theorem). If X1, . . . , Xn are i.i.d. random variables with expectation µ and
variance σ2, then

√
n

(
Xn − µ

σ

)
D−→ N (0, 1) as n→∞.

1.3 Estimation theory

Definition 1.8. In point estimation of a parameter, we are given i.i.d. random variables X1, . . . , Xn

that follow a distribution pθ, and want to find a single best guess (estimate) for θ. An estimator is a
rule for computing an estimate, given random samples X1, . . . , Xn. We treat the estimator as a function of
X1, . . . , Xn (so it is a random variable), and denote it θ̂n. We sometimes also let “estimator” refer to the

sequence (θ̂n)n as well.
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Definition 1.9.

• An estimator (θ̂n)n is consistent if θ̂n
P−→ θ.

• An estimator (θ̂n)n is unbiased if E[θ̂n] = θ for all n. Otherwise, the bias of an estimator is E[θ̂n]−θ.

Proposition 1.10. Neither consistency nor unbiasedness imply each other.

Proof. Let X1, . . . , Xn be i.i.d. following the distribution N (µ, 1), and consider estimation of µ. The
estimator µ̂n := X1 is unbiased, but not consistent. On the other hand, the estimator µ̂n := 1

n+1

∑n
i=1Xi is

consistent, but not unbiased.

P

(∣∣∣∣∣µ− 1

n+ 1

n∑
i=1

Xi

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣n+ 1

n
µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ > ε

)

≤ P

(∣∣∣∣∣µ− 1

n

n∑
i=1

Xi

∣∣∣∣∣ > ε/2

)
for large n such that |µ|/n < ε/2

→ 0. as n→∞

Proposition 1.11. If an estimator (θ̂n)n is consistent1, then limn→∞ E[θ̂n] = θ. For this reason, we
sometimes say consistent estimators are asymptotically unbiased.

We will see throughout the rest of the course that unbiasedness does not necessarily make an estimator
good.

1.4 Likelihood-based estimation

Definition 1.12. The likelihood function of θ with respect to the random sample Xi is

L(Xi, θ) := pθ(Xi).

Although L is a function of Xi and θ, we typically keep Xi fixed and think of it as a function of θ. Nonetheless,
it is still a random quantity because Xi is a random variable.

Definition 1.13. The joint likelihood function of θ with respect to the entire set of random samples
X1, . . . , Xn is

Ln(θ) := pθ(X1, . . . , Xn).

Note that this definition involves a general joint distribution of the random samples. In the special case
where the samples are i.i.d. following distribution pθ, then we have

Ln(θ) =

n∏
i=1

pθ(Xi).

Definition 1.14. The joint log-likelihood of θ with respect to X1, . . . , Xn is

`(θ) := log(Ln(θ)).

Again, if the samples are i.i.d., then

`(θ) =

n∑
i=1

log(pθ(Xi)).

1Some other conditions are required. A uniform bound on variance of the θ̂n suffices.
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Because the logarithm is an increasing function,

argmax
θ∈Θ

Ln(θ) = argmax
θ∈Θ

`(θ).

Definition 1.15. If an estimator θ̂ satisfies Ln(θ̂n) ≥ Ln(θ) for any θ ∈ Θ, then we call it a maximum
likelihood estimator (MLE). Note that the MLE may not be unique, but in most cases it will be. If the
likelihood function attains a unique maximum (over θ ∈ Θ), we denote it by

θ̂n := argmax
θ∈Θ

Ln(θ).

Example 1.16 (MLE of Gaussian distribution). Suppose X1, . . . , Xn ∼ N (µ, σ2) are i.i.d. random variables,
with µ ∈ R and σ2 > 0. Again, θ = (µ, σ2)>.

Ln(θ) =

n∏
i=1

pθ(Xi) = (2πσ2)−n/2 exp

(
− 1

2σ2

n∑
i=1

(Xi − µ)2

)

`(θ) =
n∑
i=1

log(pθ(Xi)) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(Xi − µ)2.

We want to maximize `(θ). Because of the nature of this particular expression for `(θ), we may hold σ2

fixed and maximize with respect to µ first. This reduces to minimizing
∑n
i=1(Xi−µ)2. Taking the derivative

with respect to µ and setting it equal to zero gives 0 = −2
∑n
i=1(Xi − µ). Solving gives

µ̂ =
1

n

n∑
i=1

Xi =: X,

which is the sample mean.
Knowing this, we can hold µ fixed at µ̂ and maximize `(θ) with respect to σ2 > 0. The derivative with

respect to σ2 is

− n

2σ2
+

1

2(σ2)2

n∑
i=1

(Xi −X)2.

Setting this equal to zero and solving gives

σ̂2 =
1

n

n∑
i=1

(Xi −X)2.

Note that this is slightly different than the sample variance s2 := 1
n−1

∑n
i=1(Xi−X)2. The sample variance

s2 is unbiased2, so σ̂2 is biased. This shows that the MLE is not necessarily unbiased.

We are interested in the MLE because it gives a “unified” treatment to construct estimators that are
“good” in some sense. It is not necessarily the “best” estimator, but in the “big data” regime (large n), it
is not bad.

2 If µ and σ2 are the true parameters, then

E[s2] =
1

n− 1

n∑
i=1

E[(Xi −X)2]

=
1

n− 1

n∑
i=1

(E[X2
i ]− 2E[XiX] + E[X

2
])

=
n

n− 1
E[X2

1 ]−
2

n− 1
(E[X2

1 ] + (n− 1)µ2) +
1

n(n− 1)
(nE[X2

1 ] + n(n− 1)µ2) i.i.d.

= E[X2
1 ]− µ2

= σ2.
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Definition 1.17. Given a statistical model {pθ : θ ∈ Θ} indexed by θ such that log pθ(x) is twice differen-
tiable with respect to θ, the Fisher information is defined by

I(θ) := −Eθ
[
∂2

∂θ2
log pθ(X)

]
= −

∫ (
∂2

∂θ2
log pθ(x)

)
pθ(x) dx .

One can think of the Fisher information as the “expected curvature” of log pθ(X). As we can see below,
a higher curvature corresponds with higher confidence that we have maximized log pθ(X), which results in
a lower variance in the limiting distribution.

Theorem 1.18 (Asymptotic normality of MLE). Let θ be the true parameter. Under certain conditions,3

the MLE is asymptotically normal, i.e.,

√
n(θ̂MLE

n − θ) D−→ N
(

0,
1

I(θ)

)
as n→∞,

where 1/I(θ) denotes the inverse of the matrix I(θ).

In addition, the variance of any unbiased estimator is at least as high as that of the MLE. That is, if θ̃

is an unbiased estimator, then in general we will have
√
n(θ̃n − θ)

D−→ N (0,Γ) as n→∞ for some Γ; then
Γ ≥ 1/I(θ).

When applying this theorem, we often use I(θ̂) or Î(θ̂) in place of I(θ), since θ is unknown.

I(θ̂n) = − Eθ
[
∂2

∂θ2
log pθ(X)

]∣∣∣∣
θ=θ̂n

Î(θ̂) = − 1

n

n∑
i=1

[
∂2

∂θ2
log pθ(Xi)

]∣∣∣∣
θ=θ̂n

1.5 Likelihood-based model selection

Suppose we have i.i.d. random variables X1, . . . , Xn that follow a completely unknown distribution.
Assume we have K candidate models

M1 := {p(1)
θ1

(x)}
...

MK := {p(K)
θK

(x)}.

For example,M1 could be a family of Gaussian distributions,M2 could be a family of Poisson distributions,
and so on. Our goal is to choose the model that “best” fits the data (even though it is possible that none of
the models are “correct”).

Definition 1.19 (Akaike Information Criterion (AIC)). The AIC score for model Mk is

AIC(k) = −2 log p
(k)

θ̂k
(X1, . . . , Xn) + 2dk,

where θ̂k is the MLE under modelMk, and dk is the number of “free parameters” inMk. The AIC criterion
selects the model with the lowest AIC score.

The first term in the AIC score rewards the fitness of the model, while the second term penalizes the
complexity of the model. It turns out that the AIC criterion chooses the model that minimizes the Kullback-
Leibler divergence with respect to the true joint density.

3The certain conditions are that I(θ) > 0 for all θ, and that the first derivative I′(θ) is continuous.
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Definition 1.20. If f and g are densities, the Kullback-Leibler divergence (KL divergence) of g from
f is defined to be

D(f‖g) :=

∫
f(x) log

f(x)

g(x)
dx .

We also have D(f‖g) ≥ 0 (Gibb’s inequality, follows from Jensen’s inequality), with equality if and only if
f = g. However, the KL divergence is generally not symmetric.

Proposition 1.21. The AIC criterion chooses the model that minimizes D(f∗‖p(k)

θ̂k
), where f∗ is the true

density.

Proof sketch.

D(f∗‖p(k)

θ̂k
) =

∫
f∗(x) log f∗(x) dx−

∫
f∗(x) log p

(k)

θ̂k
(x) dx

argmin
k

D(f∗‖p(k)

θ̂k
) = argmin

k

[
−
∫
f∗(x) log p

(k)(x)

θ̂k
dx

]
= argmax

k
Ef∗ [log p

(k)

θ̂k
(X)]︸ ︷︷ ︸

=:J(k)

Let Ĵ(k) := 1
n

∑n
i=1 log p

(k)

θ̂k
(Xi). By the law of large numbers (Theorem 1.6), Ĵ(k)

P−→ J(k) as n → ∞.

However, Ĵ(k) is highly biased because we use the data once to produce the MLE θ̂k, and a second time to

compute Ĵ . Akaike proved that the “bias” is approximately dk/n. To correct this, we define

J̃(k) :=
1

n

n∑
i=1

log p
(k)

θ̂k
(Xi)−

dk
n

= −AIC(k)

2n
.

Unfortunately, AIC requires many assumptions (in Akaike’s proof) and works only for large n.
One way to avoid this issue is data splitting, in which we partition the data into two subsets D1 and

D2, get MLEs θ̂1, . . . , θ̂K based only on D1, and pick the model that minimizes

DS(k) := − 1

|D2|
∑
i∈D2

log p
(k)

θ̂k
(Xi).

This setup is unbiased because we do not use the data twice as in the AIC criterion.
Going one step farther, we have cross-validation, in which we partition the data into subsets D1, . . . ,DJ .

We define

CVj(k) := − 1

|Dj |
∑
i∈Dj

log p
(k)

θ̂k
(Xi),

where θ̂k is the MLE based on D \ Dj . We then choose the model that minimizes

CV(k) :=
1

J

J∑
i=1

CVj(k).

Definition 1.22 (Bayesian Information Criterion (BIC)). The BIC score for model Mk is

BIC(k) := −2 log p
(k)

θ̂k
(X1, . . . , Xn) + (log n)dk.

The BIC criterion selects the model with the smallest BIC score.
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Note that the BIC score is simply the AIC score but with the second factor of 2 replaced by log n. This
is a harsher penalty on the complexity of a model; in general BIC selects simpler models than AIC does.

The intuition for the BIC comes from the Bayesian approach.

P(Mj | X1:n) =
P(X1:n | Mj)P(Mj)

P(X1:n)
. Bayes’s formula

One example of a prior distribution is the uniform prior P(M1) = · · · = P(MK) = 1
K . In this case, the only

relevant term is P(X1:n | Mj).
4 It turns out that the BIC score satisfies

2 log
P(Mj | X1:n)

P(Mk | X1:n)
≈ BIC(k)− BIC(j).

In applications, we use AIC and cross-validation if we care more about prediction, and we use BIC if we
care more about explanation or finding the “true” model. Adding junk features to the model may give AIC
more predictive power even though in reality they may not have any real influence.

1.6 Sufficient statistics

Sufficient statistics are an effect approach to deal with massive data.

Definition 1.23. Data reduction is the process of minimizing the amount of data needed to be stored to
do inference. There are two types of data reduction.

a) lossless (sufficient statistics, used for large n)

b) lossy (dimensionality reduction, used for large d)

Example 1.24. Let X1, . . . , Xn ∼ N (µ, σ2) be i.i.d., and suppose we want to estimate (µ, σ2). To find the
MLE, we only need the first and second moments X := 1

n

∑
iXi and 1

n

∑
iX

2
i , since

µ̂ = X,

σ̂2 =
1

n

∑
i

(Xi −X)2 =
1

n

∑
i

X2
i −

2

n
X
∑
i

Xi +X
2

=

(
1

n

∑
i

X2
i

)
−X2

.

Definition 1.25. A statistic T (X1:n) is a function of the random samples X1:n. A statistic is a sufficient
statistic for the parameter θ if the conditional distribution X1:n | T (X1:n) does not depend on θ.

In some sense, a sufficient statistic T (X1:n) contains all the information about θ that X1:n has. Note
that the trivial statistic T (X1:n) := X1:n is always sufficient.

Note that in the continuous case, we need Radon-Nikodym derivatives to justify using the density func-
tions.

Example 1.26. If X1, . . . , Xn ∼ N (µ, 1) be i.i.d., we claim that T (X1:n) := X is sufficient.

4This term is not quite the likelihood; it is actually the expected likelihood.

P(X1:n | Mj) =

∫
P(X1:n | θj ,Mj)P(θj | Mj) dPθj .
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Note that X ∼ N (µ, 1/n).

p(X1:n = x1:n | T (X1:n) = T (x1:n)) =
p(X1:n = x1:n, T (X1:n) = T (x1:n))

p(T (X1:n) = T (x1:n))

=
p(X1:n = x1:n)

p(T (X1:n) = T (x1:n))

=

∏n
i=1 p(Xi = xi)

p(X = x)

=
(2π)−n/2 exp

(
− 1

2

∑
i(xi − µ)2

)√
n
2π exp

(
−n2 (x− µ)2

)
=

(2π)−n/2√
n
2π

exp

(
−1

2

∑
i

(xi − x)2

)
,

where the last equality is due to∑
i

(xi − µ)2 =
∑
i

(xi − x+ x− µ)2

=
∑
i

(xi − x)2 + n(x− µ)2 + 2(x− µ)
∑
i

(xi − x)

=
∑
i

(xi − x)2 + n(x− µ)2.

The density function for the conditional distribution does not depend on µ, so X is indeed a sufficient
statistic.

Although the definition gives us a way to verify if something is a sufficient statistic, it does not provide a
method to find sufficient statistics. The following theorem gives an equivalent characterization of sufficient
statistics.

Theorem 1.27 (Fisher-Neyman Factorization Theorem). Let pθ(X1:n) be the joint density/mass function
of random samples X1, . . . , Xn. A statistic T (X1:n) is sufficient for parameter θ if and only if there exist
functions gθ (may depend on θ) and h (free of θ) such that for all empirical realizations x1:n and all θ, we
have

pθ(x1:n) = gθ(T (x1:n)) · h(x1:n).

Proof. We will only prove one direction. Suppose T (X1:n) is sufficient. We define

gθ(t) := pθ(T (X1:n) = t),

h(t) := p(X1:n = x1:n | T (X1:n) = T (x1:n)).

Note that h(t) is free of θ because T (X1:n) is a sufficient statistic. Then,

pθ(X1:n = x1:n) = h(x1:n) · gθ(T (x1:n)).

Example 1.28. Let X1, . . . , Xn ∼ N (µ, 1) be i.i.d., and suppose we are doing inference on µ.

pµ(x1:n) = (2π)−n/2 exp

(
−1

2

∑
i

(xi − µ)2

)
= (2π)−n/2 exp

(
−1

2

∑
i

(xi − x)2

)
︸ ︷︷ ︸

h(x1:n)

exp

(
−1

2
n(x− µ)2

)
︸ ︷︷ ︸

gµ(x)

.

Definition 1.29. A sufficient statistic is minimal if it can be represented as a function of any other sufficient
statistic.

8



Definition 1.30. The sufficiency principle states that a sufficient statistic contains all information from
the data relevant to inference about θ.

Definition 1.31. The likelihood principle states that the likelihood function contains all information
from the data relevant to inference about θ.

Note that the Fisher-Neyman factorization principle shows that if we assume the likelihood principle,
then the sufficiency principle follows.
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2 Predictive analysis (supervised learning)

Predictive analysis techniques analyze current and past data in order to make predictions about the
future. A rough overview of a typical predictive analysis process is as follows. Given training data
(Y1, X1), . . . , (Yn, Xn), build a prediction function f̂ , then given a new observation x, predict ŷ := f̂(x).

Two learning tasks are prediction (given new x predict y) and variable selection (find a small subset
of predictors that keep the most predictive power).

2.1 Regression

Regression analysis is the art of summarizing the relationship between two variables X and Y . Given
observed data (Y1, X1), . . . , (Yn, Xn) ∼ PY,X , we want a function f such that f(X) is “close” to Y .

First, we need to identify the notion of closeness. Some examples of loss functions are L1 loss

L(f(X), Y ) := |f(X)− Y |,

and L2 loss
L(f(X), Y ) := |f(X)− Y |2.

We will primarily study L2 loss here because it is mathematically simple and statistically justifiable (see
below).

Second, note that the loss is still a random quantity. We define the risk function by

R(f) := EPY,X [L(f(X), Y )] = E[|Y − f(X)|2].

We would like to find f∗ := argminf R(f).

Theorem 2.1. The function that minimizes the L2 risk is the mean function (a.k.a. regression func-
tion)

f∗(x) = E[Y | X = x].

Proof. Define f := E[Y | X = x]. We want to show f∗ = f .

R(f) = E[|Y − f(X)|2]

= E[|Y − f(X) + f(X)− f(X)|2]

= E[|Y − f(X)|2] + E[|f(X)− f(X)|2] + 2E[(Y − f(X))(f(X)− f(X))]︸ ︷︷ ︸
=0

=⇒ argmin
f

R(f) = argmin
f

E|f(X)− f(X)|2 = f.

To show E[(Y − f(X))(f(X)− f(X))] = 0, note that

E[(Y − f(X))(f(X)− f(X))] = EX [E[(Y − f(X))(f(X)− f(X)) | X]]

= EX [(f(X)− f(X))E[(Y − f(X)) | X]︸ ︷︷ ︸
=0

]

= 0

So, E[Y | X = x] minimizes L2-loss. To minimize R(f), the expectation is with respect to the true
distribution PY,X . Given data (X1, Y1), . . . , (Xn, Yn), we use the concentration principle to approximate the
population (true) risk R(f) by the empirical risk

R̂(f) :=
1

n

n∑
i=1

(Yi − f(Xi))
2.

By the law of large numbers, R̂(f)
P−→ R(f) as n→∞.

However, minimizing R̂(f) is without any further assumptions on f is problematic, as any function f

satisfying f(Xi) = Yi for each i will minimize R̂, regardless of how it acts outside of X1, . . . , Xn.
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Definition 2.2. Overfitting is a phenomenon that occurs when a statistical model has too many parameters
or degrees of freedom, so that the model not only fits the signal, but also the noise.

One solution is regularization, where we introduce additional constraints to control the degrees of
freedom of a statistical model.

Example 2.3. We can consider functions f(x) := E[Y | X = x] that satisfy one of the following.

• f(x) = β>x, where β ∈ Rd (linear model)

• f(x) = Poly(x) (polynomial model)

• f satisfies
∫

(f ′′(x))2 dx <∞ (nonparametric model)

• f(x) = β>x where many components of β are zero (sparse linear model)

2.1.1 Ordinary least squares (OLS) regression

Let Xi ∈ {1} × Rd−1 (the first component is the bias term) and Yi ∈ R. We define

β̂OLS := argmin
β

1

n

n∑
i=1

(Yi − β>Xi)
2.

We can rewrite this in vector/matrix notation. Let

Y := (Y1, . . . , Yn)>,

X := [Xi,j ] ∈ Rn×d,

where the first column of X is (1, . . . , 1)>. If we define ‖β‖2 =
√
β>β, we have

β̂OLS = argmin
β
‖Y −Xβ‖22.

Let
F (β) := ‖Y −Xβ‖22 = Y >Y + β>X>Xβ − 2Y >Xβ.

Then the gradient of F is
∂F (β)

∂β
= 2X>Xβ − 2X>Y = 0.

β̂OLS = (X>X)−1X>Y.

We will assume d < n and that X>X ∈ Rd×d is invertible.
We have defined β̂OLS to be the minimizer of the empirical risk. It turns out that β̂OLS also naturally

appears as the MLE of the Gaussian noise model

Y = β>X + ε, ε ∼ N (0, σ2).

In other words, we assume
P (Y,X) = P (Y | X)P (X)

where

Y | X ∼ N (β>X,σ2),

X ∼ PX ,

where PX is an arbitrary distribution.

11



The log-likelihood is

`(β, σ2) =

n∑
i=1

log pβ,σ2(Yi, Xi)

=

n∑
i=1

log pβ,σ2(Yi | Xi) +

n∑
i=1

log p(Xi),

and the MLE is

β̂MLE = argmax
β,σ2

`(β, σ2)

= argmax
β,σ2

n∑
i=1

log pβ,σ2(Yi | Xi)

= argmax
β,σ2

[
− 1

2σ2

(
n∑
i=1

(Yi − β>Xi)
2

)
− n log

√
2πσ2

]

= argmin
β

n∑
i=1

(Yi − β>Xi)
2 only concerned with β

This is the objective function in the definition of β̂OLS.

2.2 High-dimensional data analysis

High-dimensional data involves data with many features (d > n). When d > n, what happens to
the OLS? The system Y = Xβ becomes underdetermined, so there are infinitely many β that perfectly
determine Y = Xβ. Also, since rank(X>X) = rank(X) ≤ min{n, d} ≤ n < d and X>X ∈ Rd×d, the matrix
X>X is not invertible.

We have various regularization techniques to cope with this issue.

2.2.1 Ridge estimator

The ridge estimator with parameter λ > 0 is defined as

β̂Ridge,λ := (X>X + λId)
−1X>Y.

The matrix X>X + λId is invertible because X>X is positive semidefinite, so adding λId makes it positive
definite and thus invertible.

Note that the ridge estimator satisfies

β̂Ridge,λ = argmin
β
‖Y −Xβ‖22 + λ‖β‖22.

Indeed, letting F (β) := ‖Y −Xβ‖22 + λ‖β‖22, we have

0 =
∂F (β)

∂β
= −2X>(Y −Xβ) + 2λβ

(X>X + λId)β = X>Y

β = (X>X + λId)
−1X>Y.

We can interpret the ridge estimator in yet another way by using Lagrangian duality.

Lemma 2.4. For each λ > 0, there exists unique t such that

β̂Ridge,λ = argmin
β
‖Y −Xβ‖22 s.t. ‖β‖22 ≤ t.
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Figure 1: Ridge regression for d = 2. The countour lines for ‖Y −Xβ‖22 are ellipses because the objective
function is quadratic in β. The minimum of the objective function is the OLS estimate, but we are restricted
to the constraint region ‖β‖22 ≤ t.

This is a “regularized” version of OLS because there is an additional constraint on the parameter β. This
interpretation has a simple geometric interpretation, for example see Figure 1.

We typically use cross validation to choose the tuning parameter λ: if we select a set of candidates for λ
(about thirty or so), each defines a model, so we may perform cross validation to select a model (and thus
a λ).

2.2.2 Bridge estimator

The bridge estimator with parameters p ∈ (0,∞) and λ > 0 is defined as

β̂Bridge,λ := argmin
β
‖Y −Xβ‖22 + λ‖β‖pp,

where ‖β‖pp :=
∑
i|βi|p. Note that the ridge estimator is the bridge estimator with p = 2.

We remark that if 1 ≤ p <∞, then ‖·‖p is a norm, but if 0 < p < 1, is not a norm (the triangle inequality
fails).

2.2.3 Lasso estimator

The lasso estimator (Least Absolute Shrinkage and Selection Operator) is the bridge estimator with
p = 1, defined as

β̂Lasso,λ := argmin
β
‖Y −Xβ‖22 + λ‖β‖1.

Similar to the case of the ridge estimator, Lagrangian duality implies that for each λ > 0, there exists a
unique t such that

β̂Lasso,λ = argmin
β
‖Y −Xβ‖22 s.t. ‖β‖1 ≤ t.

See Figure 2 for a geometric interpretation when d = 2.
When d = 2, the lasso estimate tends to be a corner of constraint region, which makes one component

equal to zero. In higher dimensions, the lasso estimate also tends to have several components equal to zero;
this property is called sparsity. Sparsity helps with the task of variable selection and also is aligned with
the parsimony principle.

Consider the different shapes of the constraint regions when p varies (Figure 3).
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Figure 2: Lasso (left) and ridge (right) regression for d = 2. The countour lines for ‖Y −Xβ‖22 are ellipses
because the objective function is quadratic in β. The minimum of the objective function is the OLS estimate,
but we are restricted to the constraint regions ‖β‖1 ≤ t and ‖β‖22 ≤ t.

Figure 3: The constraint region ‖β‖pp ≤ t when d = 3.

We see that with 0 < p ≤ 1, we have sparsity because the estimator will tend to be on corners or edges
where several components are zero. However, only for 1 ≤ p < ∞ is the objective function is convex, in
which case we may use convex optimization techniques. The lasso estimator satisfies both these properties,
which is why it is a particularly notable case of the bridge estimator.

Sparsity can help with prediction and cope with noise accumulation. Note that if we have an estimate
β̂, our prediction function is

f̂(x) =

d∑
i=1

β̂ixi.

Each β̂i contributes a little bit of noise/error, but when d is large, this accumulates significantly. Sparsity
limits the number of dimensions and helps avoid this issue. One might raise the question that it is bad
to make the assumption that the underlying model is sparse, but even so, the estimator works well for
prediction, even if the underlying model is not truly sparse.

Ridge Lasso

not sparse < sparse, good for variable selection

closed form solution: (X>X + λI)−1X>Y > optimization: argminβ‖Y −Xβ‖22 + λ‖β‖1
computationally difficult < computationally easy (sparsity makes optimization easier)

can handle multicollinearity > cannot handle multicollinearity

Multicollinearity occurs when predictor variables are highly correlated with each other, meaning that
one can be linearly predicted from the others with reasonable accuracy. Handling multicollinearity is the
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biggest advantage of ridge over lasso.
It is relatively easy to detect the existence of multicollinearity, but hard to determine the cause because

there are too many possible combinations (e.g., two variables are correlated with linear combination of three
other variables, etc.).

Consider d = 2.

X =

x1,1 x1,2

...
...

xn,1 xn,2


If the two columns of X are highly correlated, the contour plot of ‖Y −Xβ‖22 is a very “flat” ellipse. If the
contours are “parallel” to edge of the lasso constraint, the system is unstable (small change in λ result in big
changes in β), and moreover the estimate may not be sparse. However, ridge regression maintains stability.

The following estimator combines the advantages of ridge and lasso.

Definition 2.5. The elastic net estimator is defined by

β̂Elastic,λ,α := argmin
β
‖Y −Xβ‖22 + λ(α‖β‖1 + (1− α)‖β‖22).

Note that when α = 1, we have the lasso estimator, and when α = 0, we have the ridge estimator. By
default, typically use α = 0.63.

Regularization paths show the value of the components of the lasso, bridge, ridge, or elastic net
estimator as function of λ. In lasso, variables are sent to zero one at a time, and result in a sparse estimate
when λ is large. In ridge, components appraoch zero as λ increases, but are never zero. Note that when
λ = 0, we have the OLS estimate. The elastic net regularization path resembles that of the lasso estimator.

Regularization paths can be used to detect multicollinearity.

1. Set α = 1, fit lasso, visualize regularization path.

2. Set α = 0.6, fit elastic net, visualize regularization path.

3. Compare these two plots, look for any “dramatic” change. If no, then there is probably no multi-
collinearity, so we use α = 1 to take the full advantage of the lasso estimator. If yes, it is probably due
to the instability of lasso under multicollinearity, so we use α = 0.6 to cope.

4. Then, choose λ by cross validation.

The linear model is not as restrictive as it seems. We describe a few methods of moving from linear
models to nonlinear models.

1. Inputs can be transformations of original features. For example, consider

Y ∼ β1f(X1) + · · ·+ βdf(Xd),

where f can be the logarithm, square root, square, etc.

2. Inputs can have interaction terms. For example, in addition to X1, . . . , Xd, we can also include

X1X2, X1X3, . . . , Xd−1Xd

as variables. However, we pay the price of adding more variables (bivariate interaction adds ∼ d2/2,
trivariate interaction adds ∼ d3/6). Including interaction terms naturally transforms the data into
high-dimensional data even if they were not originally so.

3. Inputs can have basis expansions. For example, for each Xi, include X2
i , X

3
i , . . .. If the number of basis

elements is allowed to increase, we enter the world of nonparametric models. For example, can use
polynomial basis to approximate functions in the Sobolev space

{
f :
∫

(f ′′)2 <∞
}

. Instead of using

f(X) =
∑d
j=1 βjXj , we can consider f(X) =

∑p
j=1 βjhj(X). If p → ∞, we have a nonparametric

model.
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Example 2.6 (Tree regression). Let d = 1. Let hi(x) := 1{x ≤ ti} for 1 ≤ i ≤ p, where t1, . . . , tp ∈ R are
given. Then Y =

∑p
j=1 βjhj(X) + ε is tree model.

We can also handle situations where the input variable is categorical.

Definition 2.7. A categorical variable is a variable that takes on values from a finite [typically unordered]
set.

Dummy coding Given a categorical random variable with K categories, encode it using K − 1 dummy
variables.

1 = (0, 0, 0, . . . , 0)

2 = (1, 0, 0, . . . , 0)

3 = (0, 1, 0, . . . , 0)...
K = (0, 0, 0, . . . , 1)

2.3 Classification and discriminant analysis

We quickly summarize our discussion of regression so far. The intuition behind regression is to minimize
the risk

R(f) := E[|Y − f(X)|2],

and that this perspective is completely model-free (i.e., we assume nothing about the joint distribution
(X,Y ) ∼ PX,Y ). We showed that the minimizing f is f∗(x) := E[Y | X = x]. Because we cannot observe
R(f), we instead consider the empirical risk

R̂(f) =
1

n

n∑
i=1

|Yi − f(X)|2.

However, minimizing empirical risk leads to overfitting. To combat this issue, we regularize by considering
linear models f(X) = β>X. This gives the OLS β̂ = (X>X)−1X>Y ; we also showed that this solution
can be derived from a model-based perspective (the Gaussian noise model). This approach fails with high-
dimensional data, so we consider ridge, bridge, and lasso, as well as elastic-net. We discussed how to move
from from linear to nonlinear models, parametric to nonparametric models, and numerical to categorical
data.

Definition 2.8. Classification is regression with a categorical response variable Y = {1,−1}.

The goal of classification is still the same as in general regression; we want to find a mapping h such
that Y and h(X) are “close” to each other. Unlike general regression however, here we may assume that the
range of h is {1,−1}.

We may use the L2 loss as before, but in classification it is equivalent to 0-1 loss up to a scalar multiple.

L(h) := ‖Y − h(X)‖22 = 4 · 1{Y 6= h(X)}.

We will only use 0-1 loss for classification.
The risk function is again defined by

R(h) := E[L(h)] = E[1{Y 6= h(X)}] = P(Y 6= h(X)).

Definition 2.9. The Bayes classification rule is defined by

h∗ = argmin
h

R(h).

The Bayes risk is R∗ := R(h∗).
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Theorem 2.10 (Bayes classification rule). The risk-minimizing function is

h∗(x) =

{
1 P(Y = 1 | X = x) > 1

2 ,

−1 otherwise.

Proof.

R(h) = P(Y 6= h(X))

= 1− P(Y = h(X))

= 1−
∑

y∈{1,−1}

P(Y = y, h(X) = y)

= 1−
∑

y∈{1,−1}

E[1{Y = y, h(X) = y}]

= 1−
∑

y∈{1,−1}

EX [E[1{Y = y} · 1{h(X) = y} | X]]

= 1−
∑

y∈{1,−1}

EX [1{h(X) = y}E[1{Y = y} | X]]

= 1−
∑

y∈{1,−1}

EX [1{h(X) = y}P(Y = y | X)]

= 1−
∫

(1{h(x) = 1}P(Y = 1 | X = x) + 1{h(x) = −1}P(Y = −1 | X = x)) · p(x) dx

We want to maximize the integrand, so we want

h(x) =

{
1 P(Y = 1 | X = x) > P(Y = −1 | X = x),

−1 otherwise.

Noting that P(Y = 1 | X = x) + P(Y = −1 | X = x) = 1 finishes the proof.

Recall that the function that minimized the L2 risk in general regression is E[Y | X = x] (Theorem 2.1).
In the classification setting, this function takes the form

E[Y | X = x] = P(Y = 1 | X = x)− P(Y = −1 | X = x)

= 2P(Y = 1 | X = x)− 1.

So,
signE[Y | X = x] = h(x),

where we define

sign(t) :=

{
1 t > 0,

−1 t ≤ 0.

This result is intuitive. Without the restriction to the class of functions whose range is {−1, 1}, the risk-
minimizing function would be E[Y | X = x]. The “closest” function in the restricted class is the one that
matches the sign of E[Y | X = x].

Definition 2.11. Let r(x) := P(Y = 1 | X = x). We define the decision boundary by

D(r) := {x : r(x) = 1/2}.

The empirical risk is defined by

R̂(h) :=
1

n

n∑
i=1

1{Yi 6= h(Xi)}.
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Again, minimizing empirical risk leads to overfitting, since any function that is correct on the observed data
will minimize empirical risk, regardless of how it behaves on unobserved inputs.

As before, we turn to regularization to deal with this issue. We impose the restriction that h is of the
form h(X) = sign(β>X).

β̂ = argmin
β

n∑
i=1

1{Yi 6= sign(β>Xi)}.

Unfortunately, this optimization problem is hard to compute, since the indicator function is nonconvex! This
is in contrast to the OLS from earlier where we were even able to have a closed-form solution.

We leave the risk-based approach for the moment and consider the model-based approach. How do we
model r(x) := P(Y = 1 | X = x)? We consider logistic modeling. The logistic function is defined by
g(t) := 1

1+e−t . This is a “smooth” version of the sign function (see Figure 4). Given a function f : Rd → R,
we consider the model where

Pf (Y = 1 | X = x) :=
1

1 + e−f(x)
,

which consequently implies

Pf (Y = −1 | X = x) =
1

1 + ef(x)
.

We can combine these two expressions into the following form.

Pf (Y = y | X = x) =
1

1 + e−yf(x)
.
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Figure 4: Plot of 1
1+e−t

Other possible models include inverse tangent, cdf of normal, etc. However, these examples still suffer
from nonconvexity. The logistic model has “won” in popularity due to its convexity which leads to low
computational complexity.

Restricting the type of functions f allows for different types of logistic models.

Example 2.12 (Linear logistic regression).

f(x) := β0 + β>1 x

P (Y = 1 | X = x) =
1

1 + e−β0+β>1 x

Example 2.13 (Nonparametric logistic regression). Let f(x) be “smooth”, e.g.
∫

(f ′′)2 <∞.

However, note that choosing a class of functions f does not yet fully define the joint distribution of X
and Y . The statistical model of logistic regression is

{p(y, x) := Pf (Y = y | X = x)pX(x) : f, pX},

where pX is the marginal density of X, and Pf (Y = y | X = x) := 1
1+e−yf(x)

. The pX is called a “nuisance
parameter” because it is needed to make the model valid, but we do not want to infer it at all. The f is the
“parameter of interest” because it is the parameter we want to infer.
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Given the random samples {(Xi, Yi)}ni=1, we compute the MLE under this statistical model.

L(f) :=

n∏
i=1

Pf (Yi | Xi)pX(Xi)

L(f) =

n∏
i=1

1

1 + e−Yif(Xi)
pX(Xi)

`(f) = −
n∑
i=1

log(1 + e−Yif(Xi)) +

n∑
i=1

log pX(Xi)

f̂ := argmax
f

`(f) = argmin
f

n∑
i=1

log(1 + e−Yif(Xi))

This motivates the definition of the following new loss function, which we call logistic loss, induced by
the logistic model.

`Logistic(y, f(x)) := log(1 + e−yf(x)).
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Figure 5: Plot of log(1 + e−yf(x)) vs. y · f(x)

The quantity y · f(x) is called the functional margin, and we want it to be large to incur less loss, i.e.,
we encourage Yi and f(Xi) to have the same sign. Alternatively, consider

P(Yi = 1 | Xi = xi) =
1

1 + e−f(Xi)

=⇒ log
P(Yi = 1 | Xi = xi)

P(Yi = −1 | Xi = xi)
= f(xi).

This also captures the idea that we want f(Xi) and Yi to have the same sign. Note that the logistic loss not
only encourages Yif(Xi) to be positive, but also to be far away from zero.

To handle high-dimensional data, the ridge, bridge, lasso, and elastic net regressions are still applicable
and effective. For instance, the ridge estimator for linear logistic regression is

β̂Ridge,λ := argmin
β

n∑
i=1

log(1 + e−Yi(β
>Xi)) + λ‖β‖22.
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[Note that β0 still exists above, but we suppress it as an appended component to the Xi for ease of notation.]

Even though
∑n
i=1 log(1 + e−Yi(β

>Xi)) is not quadratic, it is still convex, so the contours still look similar
to those of ‖Y −Xβ‖22 from the previous section. The other approaches are analogous.

How does this compare to the OLS estimator, which is derived from using L2-loss? Recall that β̂OLS :=
argminβ

1
n

∑n
i=1(Yi − β>Xi)

2. Because (β̂OLS)>x is a real number, our estimator is sign((β̂OLS)>x). Note

however that we can rewrite the definition of β̂OLS as

β̂OLS := argmin
β

1

n

n∑
i=1

(1− Yiβ>Xi)
2

because Y ∈ {1,−1}. Then Yiβ
>Xi is the functional margin, and the summand corresponds to a quadratic

loss function `(u) = (1 − u)2. This loss function is small when the functional margin is near 1, but when
the functional margin Yiβ

>Xi is large, it still incurs a large loss despite being correct. This is a significant
drawback of L2 loss.

However, using L2 loss not only encourages the functional margin to be away from the negative horizontal
axis (misclassification), but also to be far from the ambiguous zone near zero on the horizontal axis; it
constrains the functional margin to be in a small region, but it is in the correct region. Logistic loss
encourages the functional margin to be large, but does a worse job of keeping it away from the ambiguous
region near zero.

L2 loss leads to linear discriminant analysis (LDA), which is powerful. Moreover, using logistic loss might
require more data than L2 loss. Neither L2 loss or logistic loss is clearly better than the other.

We could also combine the two loss functions by considering considering the truncated quadratic loss
`(u) := (1−u)21{u ≤ 1}; this is sometimes better and sometimes worse than the previous two loss functions.
In short, the question of whether a loss is good or not depends on the context and various other factors. In
some applications, a certain loss function has been empirically shown to be better than others.

• Text mining: sparse logistic regression

• Image analysis: boosting (exponential loss)

• Genomics : LDA (quadratic loss)

The hinge loss is defined by [x]+ := max(x, 0). Then the SVM estimator is defined by

β̂SVM = argmin
β

1

n

n∑
i=1

[1− Yiβ>Xi]+ + λ‖β‖22.

There are more involved interpretations of SVM that involve hyperplanes and margins, but from a statistical
perspective, SVM is simply ridge logistic regression with hinge loss.

In boosting we consider the exponential loss e−Yif(Xi). Again, there are more involved interpretations
of boosting, but from a statistical perspective it simply uses a different loss function.

Recall that in the statistical model of logistic regression, we model the distribution of Y | X, but not
of X; this is a discriminative model, and we are unable to generate new data (Y,X) due to our lack of
knowledge of the distribution of X. On the other hand, in generative modeling we model X | Y and Y ,
and then use Bayes formula to model Y | X; note that we can generate new data (Y,X) because we model
the joint distribution.

P(Y = 1 | X = x) =
p(x | Y = 1)P(Y = 1)

p(x | Y = 1)P(Y = 1) + p(x | Y = −1)P(Y = −1)

=:
p+(x)η

p+(x)η + p−(x)(1− η)
,

where we let p+(x) := p(x | Y = 1), p−(x) := p(x | Y = −1), and η := P (Y = 1).
We need to model P(Y = ±1), p(x | Y = 1), and p(x | Y = −1). Clearly Y ∼ Ber(η) for some η (note,

we let Bernoulli to take on values ±1 rather than 1 and 0); this is the only way we can model Y .
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Figure 6: Plots of logistic loss log(1 + e−yf(x)), quadratic loss (1 − yf(x))2, hinge loss [1 − yf(x)]+, and
exponential loss e−yf(x) vs. y · f(x)

We have more freedom in modeling X. In Gaussian discriminant analysis (GDA) we have

X | (Y = 1) ∼ N (µ+,Σ+)

X | (Y = −1) ∼ N (µ−,Σ−),

i.e.,

p+(x) = (2π)−d/2|Σ+|−1/2 exp

(
−

(x− µ+)>Σ−1
+ (x− µ+)

2

)

p−(x) = (2π)−d/2|Σ−|−1/2 exp

(
−

(x− µ−)>Σ−1
− (x− µ−)

2

)

Note again that we are not assuming the true conditional distributions are Gaussian; we are using a
simplified model for the sake of regularization.

Logistic regression and other discriminative models care only about prediction, and thus only model
Y | X and disregard the marginal distribution of X. Generative modeling involves a belief/philosophy of
how the data was generated. In this sense, discriminative modeling relies on fewer assumptions.

The Bayes Rule under GDA can be rewritten as follows.

P(Y = 1 | X = x) > P(Y = −1 | X = x)

⇐⇒ p+(x)η > p−(x)(1− η)

⇐⇒ log
p+(x)

p−(x)
+ log

η

1− η
> 0

The first term is

p+(x)

p−(x)
=
|Σ−|1/2

|Σ+|1/2
exp

(
−

(x− µ+)>Σ−1
+ (x− µ+)

2
+

(x− µ−)>Σ−1
− (x− µ−)

2

)

log
p+(x)

p−(x)
=

1

2
log
|Σ−|1/2

|Σ+|1/2
−

(x− µ+)>Σ−1
+ (x− µ+)

2
+

(x− µ−)>Σ−1
− (x− µ−)

2
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If we define the Mahalanobis distances

γ2
+(x) := (x− µ+)>Σ−1

+ (x− µ+),

γ2
−(x) := (x− µ−)>Σ−1

− (x− µ−),

we have

h∗(x) =

{
1 if 1

2γ
2
−(x)− 1

2γ
2
+(x) + 1

2 log |Σ−||Σ+| + log η
1−η > 0

−1 otherwise

The condition is a quadratic form of x, i.e., it is of the form x>Ax + b>x + c. For this reason, GDA is
sometimes called quadratic discriminant analysis (QDA).

Given only the data, how to estimate µ+, µ−, Σ+, Σ−, η? MLE.

n+ :=

n∑
i=1

1{Yi = 1}

n− := n− n+

µ̂+ :=
1

n+

∑
i:Yi=1

Xi

µ̂− :=
1

n−

∑
i:Yi=−1

Xi

η̂ :=
n+

n

Σ̂+ :=
1

n+

∑
i:Yi=1

(Xi − µ̂+)(Xi − µ̂+)>

Σ̂− :=
1

n−

∑
i:Yi=−1

(Xi − µ̂−)(Xi − µ̂−)>

Linear discriminant analysis (LDA) is the special case of QDA with the extra condition of a common
covariance matrix: Σ+ = Σ− = Σ.

(x− µ−)>Σ−1(x− µ−)− (x− µ+)>Σ−1(x− µ+)

= x>Σ>x− 2µ>−Σ−1x+ µ>−Σ−1µ− − x>Σ>x+ 2µ>+Σ−1x− µ>+Σ−1µ+

= −2µ>−Σ−1x+ µ>−Σ−1µ− + 2µ>+Σ−1x− µ>+Σ−1µ+

So, if we define

β := Σ−1(µ+ − µ−) (1)

β0 :=
1

2
µ>−Σ−1µ− −

1

2
µ>+Σ−1µ+ + log

η

1− η
, (2)

we have

h∗(x) =

{
1 if β>x+ β0 > 0

−1 otherwise

The decision boundary is linear in x, hence the name “linear discriminant analysis.”
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Let us return to the condition distribution Y | X under the LDA framework.

P(Y = 1 | X = x) =
p(x | Y = 1)P(Y = 1)

p(x | Y = −1)P(Y = −1) + p(x | Y = 1)P(Y = 1)

=
1

1 + p(x|Y=−1)(1−η)
p(x|Y=1)η

=
1

1 + exp(log p(x|Y=1)
p(x|Y=−1) − log η

1−η )

=
1

1 + e−β0+β>x
.

This appears to be precisely the conditional distribution in the setting of linear logistic regression. How-
ever in LDA, the β0 and β are constrained to take the particular form (see equations (1) and (2)) in terms
of the parameters of the Gaussian distributions, whereas in logistic regression, β0 and β are arbitrary. Thus,
LDA is a special case of linear logistic regression; the assumption of the Gaussian conditional distributions
makes it more regularized than linear logistic regression.

We already know the logistic model corresponds to logistic loss; it turns out that the LDA model corre-
sponds to quadratic loss (difficult topic). If the true model does involve the extra assumption of conditional
Gaussian, then both losses give the right parameters.

This leads us to the question of which technique we should use: logistic regression or LDA? In applica-
tions, we generally use logistic regression. In most applications, if LDA assumption is correct, then logistic
regression works and is usually more efficient than LDA.

In high dimensions (d > n), we use diagonal linear discriminant analysis (DLDA), which is LDA
with the further assumption that the covariance matrix is diagonal.

Σ =


σ2

1

σ2
2

. . .

σ2
d


Note that a Gaussian distribution with a diagonal covariance matrix has contours that are ellipses/ellipsoids
whose axes are parallel to the component axes. In particular, the components are independent of each other,
so we may

Y ∼ Ber(η)

Xj | (Y = 1) ∼ N (µ+,j , σ
2
j )

Xj | (Y = −1) ∼ N (µ−,j , σ
2
j )

Even though independence of the components conditioned on the class Y (this is known as the “Näıve
Bayes assumption”) may not actually hold, using dramatically simplified (and wrong) models often still
works well.

p(x | Y = 1) =

d∏
j=1

p(xj | Y = 1) =

d∏
j=1

exp
(
− (xj−µ+,j)

2

2σ2
j

)
√

2πσ2
j

.

The MLEs µ̂+ and µ̂− are the same as for LDA/QDA. For the covariance matrix, we have

σ̂2
j =

n+Ŝ+,j + n−Ŝ−,j
n

,

where n+ :=
∑n
i=1 1{Yi = 1} and Ŝ+,j := 1

n+

∑
i:Yi=1(Xi,j − µ̂+,j)

2, with analogous definitions for n− and

Ŝ−,j .
DLDA is a special case of LDA, but is also a special case of a Näıve Bayes classifier.
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Definition 2.14. The Näıve Bayes classifiers form a family of generative classification methods that
exploit the regularization “X1, . . . , Xd (components) are conditionally independent given Y ,” or more ex-
plicitly,

p(x1, . . . , xd | Y ) =

d∏
j=1

p(xj | Y ).

We describe classification in general under the Näıve Bayes assumption. Recall the Bayes classification
rule

h∗(x) =

{
1 f(x) > 0

−1 otherwise

where

f(x) := log
P(Y = 1 | X = x)

P(Y = −1 | X = x)
.

Then,

f(x) = log
P(Y = 1 | X = x)

P(Y = −1 | X = x)

= log
P(Y = 1)

P(Y = −1)
+ log

p(x | Y = 1)

p(x | Y = −1)

= log
η

1− η
+

d∑
i=1

log
p(xj | Y = 1)

p(xj | Y = −1)
Näıve Bayes assumption

=: β0 +

d∑
j=1

fj(xj),

where we have defined fj(xj) := log
p(xj |Y=1)
p(xj |Y=−1) .To compute the MLE, we can consider each component

separately.

• In full QDA, we have µ+, µ−, Σ+, Σ−, and η, so total number of parameters is d+d+d(d+1)
2 +d(d+1)

2 +1 =
d(d+ 1) + 2d+ 1.

• In LDA, we have µ+, µ−, Σ, and η, so total number of parameters is d(d+1)
2 + 2d+ 1.

• In DLDA, same as LDA, but Σ is diagonal, so the number of parameters is 3d+ 1.

• In DQDA (two diagonal covariance matrices), the number of parameters is 4d+ 1.
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3 Generalized linear models

Generalized linear models give a systematic view of regression and classification. We have seen a few
types of regression already, like Gaussian linear regression and logistic regression.

These models can be decomposed into the following components

1. Stochastic component.

2. Systematic component

3. Link function

We first state the components for Gaussian linear regression and logistic regression in order to motivate
the generalization.

Gaussian linear regression Logistic regression

Model Yi = β>Xi + εi, εi ∼ N (0, σ2) P(Yi = 1 | Xi) = 1

1+e−β
>Xi

Stochastic component Yi | Xi ∼ N (µi, σ
2) where µi := β>Xi Yi | Xi ∼ Ber(µi), where µi := E[Yi | Xi]

Systematic component ηi := β>Xi ηi := β>Xi
Link function ηi = g(µi), with g the identity ηi = g(µi), with what g?

The link function g for logistic regression is derived as follows.

µi = E[Yi | Xi]

µi = P(Yi = 1 | Xi)− P(Yi = −1 | Xi)

µi =
1

1 + e−ηi
− 1

1 + eηi

µi =
eηi − 1

1 + eηi

µi + µie
ηi = eηi − 1

(1− µi)eηi = 1 + µi

ηi = log
1 + µi
1− µi

g(t) = log
1 + t

1− t

This g is known as the logit function.

Remark: why not set ηi := e−β
>Xi in logistic regression? We could model it this way, but when we try

to use inference, we will run into computational issues (non-convexity causes intractability etc.)
Note that the link function links the systematic component (which is the input with possibly a transfor-

mation) to the mean of the stochastic component (the expected response of the input).
Generalized linear models (GLMs) are an extension of the three-component modeling scenario above.

1. We allow the stochastic components to follow any distribution, not just Gaussian or Bernoulli.

2. We allow the link functions to be more general, not just identity or logit.

3. We allow ηi = f(xi) where f is more general, not just β>xi.

In practice,

1. Stochastic component: exponential dispersion family.

2. Link function: canonical link.

3. Systematic component: general.
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Definition 3.1. The exponential dispersion family (EDF) contains any univariate distribution whose
density takes the form

pθ,τ (y) = hτ (y) exp

(
θy −A(θ)

τ

)
.

The parameter θ is the canonical parameter, τ is the dispersion parameter. The function A(θ) is the
normalization function and may depend on τ . The function hτ (y) is called the base measure and must
be free of θ.

In the Gaussian distribution, τ is the variance, which is some sense the reasoning behind the term
“dispersion.”

The exponential dispersion family is more general than the exponential family.
The exponential dispersion family is in some sense the largest family of distributions for which any

computation involving inference is tractable. In the past, people tried larger families of distributions, but
ran into issues with non-convexity making problems intractable.

Example 3.2 (Gaussian distribution belongs to the EDF).

p(y) =
1√

2πσ2
exp

(
− (y − µ)2

2σ2

)
=

1√
2πσ2

exp

(
−y

2 + µ2 − 2yµ

2σ2

)
=

(
1√

2πσ2
e−

y2

2σ2

)
exp

(
µy − µ2

2

σ2

)

=

 1√
2πτ

exp

(
− y

2

2τ

)
︸ ︷︷ ︸

hτ (y)

 exp

(
θy −A(θ)

τ

)
θ := µ,A(θ) := θ2/2, τ = σ2

Example 3.3 (Bernoulli distribution belongs to the EDF). P(Y = 1) = q and P(Y = −1) = 1− q.

p(y) = q
1+y
2 (1− q)

1−y
2

= (q(1− q))1/2

(
q

1− q

)y/2
= exp

((
1

2
log

q

1− q

)
y +

1

2
log(q(1− q))

)
.

We let θ := 1
2 log q

1−q , which implies

q

1− q
= e2θ

q = e2θ − qe2θ

q =
e2θ

1 + e2θ
.

Thus,

A(θ) = −1

2
log(q(1− q))

= −1

2
log

(
e2θ

1 + e2θ
· 1

1 + e2θ

)
=

1

2
(log(1 + e2θ) + log(1 + e−2θ)).

Letting τ := 1 and hτ (y) := 1 gives the EDF form.
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Example 3.4 (Poisson distribution belongs to the EDF).

p(y) =
1

y!
e−λλy =

1

y!
exp(−λ+ y log λ).

This is clear with θ := log λ, A(θ) := eθ, τ := 1, and hτ (y) := 1/y!.

Most familiar distributions are in the EDF with the exception of the uniform distribution.
We call θ the canonical parameter but call η the natural parameter. The exponential dispersion family

requires a special link function called the canonical link function which is necessary to lead to convex
optimization in inference.

Canonical link principle: we always use the link function

η = g(µ) := (A′)−1(µ).

For instance, in the Gaussian distribution, A(θ) = 1
2θ

2, so A′(θ) = θ, and finally g(µ) = (A′)−1(µ) = µ,
as seen in the beginning of the section.

In the Bernoulli distribution,

A(θ) =
1

2
(log(1 + e2θ) + log(1 + e−2θ))

A′(θ) =
1

2

(
2e2θ

1 + e2θ
+
−2e−2θ

1 + e−2θ

)
A′(θ) =

e2θ − 1

e2θ + 1

µ =
e2θ − 1

e2θ + 1
inverting

µe2θ + µ = e2θ − 1

1 + µ

1− µ
= e2θ

θ =
1

2
log

1 + µ

1− µ
.

This is almost the same as the link function considered at the beginning; the factor of 1/2 is inconsequential.
In the Poisson distribution, A(θ) = A′(θ) = eθ, so g(µ) = logµ.
Again, the reason for choosing the canonical link instead of an arbitrary link function is to ensure

tractability: we want to avoid non-convex optimization problems.
Note that we only need to involve µ (mean of distribution) in link function.
The goal of canonical link theory is to have g(µ) be the canonical parameter θ.

θ = η = g(µ)

The following theorem shows that we achieve this goal if we take g(µ) := (A′)−1(µ).

Theorem 3.5. If Y follows a distribution p(y) = hτ (y) exp
(
θy−A(θ)

τ

)
from the EDF, we have

µ := E[Y ] = A′(θ).

Consequently, (A′)−1(µ) = θ.
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Proof.

1 =

∫
p(y) dy

1 =

∫
hτ (y) exp

(
θy −A(θ)

τ

)
dy

1 = e−A(θ)/τ

∫
hτ (y)eθy/τ dy

A(θ) = τ log

∫
hτ (y)eθy/τ dy

A′(θ) = τ

∫
hτ (y) yτ e

θy/τ dy∫
hτ (y)eθy/τ dy

Leibniz rule or Fubini’s theorem

= τ

∫
hτ (y) yτ e

θy/τ dy

eA(θ)/τ

=

∫
yhτ (y) exp

(
θy −A(θ)

τ

)
dy

= E[Y ]

To fit the GLM, maximize the log-likelihood log
∏n
i=1 P(Yi = yi | Xi = xi); to predict, report µi =

g−1(ηi).
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4 Exploratory analysis (unsupervised learning)

4.1 Graphical models

In this section we introduce Gaussian graphical models. Note that these are different from “Bayesian
network” graphical models that appear in other literature.

Let X1, . . . , Xn ∼ N (µ,Σ) be i.i.d. random variables, with µ ∈ Rd and Σ ∈ Rd×d. We aim to find a
sparse estimate for Θ := Σ−1, called the precision matrix.

Given X1, . . . , Xd and A ⊂ {1, . . . , d}, we let XA := {Xj : j ∈ A} and X\A := {Xj : j /∈ A}.

Definition 4.1. Let A,B ⊂ [1, . . . , d]. We say XA and XB are independent if for any realizations xA and
xB , we have p(xA, xB) = p(xA) · p(xB). We denote this XA |= XB .

We say XA and XB are conditionally independent given XC if for any realizations xA, xB , and xC ,
then p(xA, xB | xC) = p(xA | xC) · p(xB | xC). In some sense, XC “explains” the dependency between XA

and XB .

Independent random variables need not always be conditionally independent: if X and Y are independent,
they are not independent given Z := X + Y .

Conditionally independent random variables need not be independent either: letX,Y1, Y2 be independent.
Then X + Y1 and X + Y2 are conditionally independent given X, but are not independent.

If we have the influences A −→ B −→ C, then A 6 |= B, but A |= C | B.
Conditional independence relationships help represent joint distributions more efficiently. For instance,

if X1, . . . , Xd are all binary random variables, we need 2d − 1 numbers to store the joint distribution. If we
know that there are conditional independence relationships, we can factorize the joint distribution and use
less space to store it.

Theorem 4.2.
Θj,k = 0 ⇐⇒ Xj |= Xk | X\{j,k}.

Proof. We want to show that Θ1,2 = 0 =⇒ X1 |= X2 | X\{1,2}. It suffices to show the factorization
p(x1, x2 | x3, . . . , xd) = p(x1 | x3, . . . , xd)p(x2 | x3, . . . , xd). Without loss of generality we assume µ = 0.

p(x1, . . . , xd) =
1

(2π)d/2
|Θ|1/2 exp

(
−1

2
x>Θx

)

p(x) ∝ exp

−1

2
Θ1,1x

2
1 −

1

2
Θ2,2x

2
2 −

d∑
j=3

Θ1,jx1xj −
d∑
k=3

Θ2,kx2xk − f(Θj,k, xj , xk; 3 ≤ j ≤ k ≤ d)

,
where the function f contains the remaining terms in the expansion of x>Θx, which will cancel out in the
calculation below because they are free of x1 and x2. Note that we used the fact that Θ1,2 = 0.

p(x1, x2 | x3, . . . , xd)

=
p(x1, . . . , xd)∫ ∫

p(x1, . . . , xd) dx1 dx2

=
exp
(
− 1

2Θ1,1x
2
1 − 1

2Θ2,2x
2
2 −

∑d
j=3 Θ1,jx1xj −

∑d
k=3 Θ2,kx2xk

)
∫ ∫

exp
(
− 1

2Θ1,1x2
1 − 1

2Θ2,2x2
2 −

∑d
j=3 Θ1,jx1xj −

∑d
k=3 Θ2,kx2xk

)
dx1 dx2

=
exp
(
− 1

2Θ1,1x
2
1 − 1

2Θ2,2x
2
2 −

∑d
j=3 Θ1,jx1xj −

∑d
k=3 Θ2,kx2xk

)
∫

exp
(
− 1

2Θ1,1x2
1 −

∑d
j=3 Θ1,jx1xj

)
dx1 ·

∫
exp
(
− 1

2Θ2,2x2
2 −

∑d
k=3 Θ2,jx2xk

)
dx2

This gives the desired factorization.
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In Homework 3 a proof for both directions is outlined; we sketch the argument here. Again we assume
without loss of generality that µ = 0. Letting A := {1, 2}, we can partition Σ into

Σ =

[
ΣAA ΣAAc

ΣAcA ΣAcAc

]
.

It turns out that
XA | XAc ∼ N (0,ΣAA − ΣAAcΣ

−1
AcAcΣAcA).

From the fact that ΣΘ = I, we have Θ−1
AA = ΣAA−ΣAAcΣ

−1
AcAcΣAcA, so XA | XAc ∼ N (0,Θ−1

AA). Using the
fact that the components of a multivariate Gaussian are independent if and only if their covariance is zero,
we easily have Θ1,2 = 0 if and only if X1 |= X2 | X\{1,2}.

We construct a graphical representation of Θ. Let G := (V,E) with V := {1, . . . , d} and E ⊂ V ×V . We
place an edge (j, k) ∈ E (where j 6= k) whenever Θj,k 6= 0. This is called graphical model learning or graph
estimation.

Estimating the precision matrix: maximum penalized likelihood estimation (MPLE).

p(x) =
1

(2π)d/2
|Θ|1/2 exp

(
−1

2
(x− µ)>Θ(x− µ)

)
We already know µ̂ = 1

n

∑n
i=1Xi.

Ln(Θ) :=
1

(2π)d/2
|Θ|n/2 exp

(
−1

2

n∑
i=1

(Xi −X)>Θ(Xi −X)

)

`(Θ) = −1

2

n∑
i=1

(Xi −X)>Θ(Xi −X) +
n

2
log|Θ| − nd

2
log(2π)

= C +
n

2
log|Θ| − 1

2

n∑
i=1

(Xi −X)>Θ(Xi −X)

= C +
n

2
log|Θ| − 1

2

n∑
i=1

Tr
(
(Xi −X)>Θ(Xi −X)

)
= C +

n

2
log|Θ| − 1

2

n∑
i=1

Tr
(
Θ(Xi −X)(Xi −X)>

)
= C +

n

2
log|Θ| − n

2
Tr

(
Θ

1

n

n∑
i=1

(Xi −X)(Xi −X)>

)
= C +

n

2
log|Θ| − n

2
Tr(ΘSn).

Note that the sample covariance matrix Sn is the sufficient statistic for Θ. We impose sparsity by imposing
a constraint on Θ.

Θ̂ := argmax
Θ

`(Θ) s.t. ‖Θ‖1 :=
∑
j,k

|Θj,k| ≤ L

Θ̂ = argmax
Θ

`(Θ)− λ‖Θ‖1

= argmin
Θ

Tr(ΘSn)− log|Θ|+ λ‖Θ‖1

This optimization problem is called the graphical lasso.
We now define the graph induced by Θ and discuss how it represents conditional independence relation-

ships. Let G be a graph with vertices {1, . . . , d}, and let there be an [undirected] edge between distinct
vertices i and j if and only if Θi,j 6= 0.

Let A,B,C ⊂ V . We say C separates A and B (denoted A ⊥ B | C) if removing C separates A and B
(no path between A and B after removing C). This turns out to be equivalent to XA |= XB | XC .
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Graph theory Probability theory

G = (V,E); V = [d] p(x1, . . . , xd)
separation A ⊥ B | C conditional independence XA |= XB | XC

Separation and conditional independence are connected by the Markov properties

Definition 4.3 (Pairwise Markov Property).

Xj |= Xk | X\{j,k} ⇐⇒ (j, k) /∈ E.

For the Gaussian model we have defined, Theorem 4.2 and the definition of the graph immediately imply
that the Gaussian model has the pairwise Markov property.

Definition 4.4 (Global Markov Property). For A,B,C ⊂ V = [d],

XA |= XB | XC ⇐⇒ A ⊥ B | C.

Clearly, the global Markov property implies the pairwise Markov property, but surprisingly, the converse
often holds.

Theorem 4.5 (Lauritzen, 1996). If p(x) > 0, then the pairwise Markov property is equivalent to the global
Markov property.

This theorem is proved by induction on the number of nodes d.

4.2 Clustering, mixture models, and latent variable models

Clustering is a classification problem but with hidden/unobserved/latent class labels. Our goal is to
recover the latent class labels.

Example 4.6 (Mixture of two Gaussians). Let Z equal 1 with probability η and 2 otherwise. Let X | (Z =
1) ∼ N (µ1, 1) and X | (Z = 2) ∼ N (µ2, 1). We observe only the observed random samples X1, . . . , Xn, and
not the latent variables Z1, . . . , Zn.

Given X1, . . . , Xn, we aim to infer η, µ1, and µ2, and Z1, . . . , Zn. We would also like to compute the
probability P(Zi = 1 | X1, . . . , Xn), the probability that Xi is sampled from distribution 1. [Note that if the
Zi are observed, we can do Gaussian discriminant analysis as before, but here the Zi are unobserved.]

For the mixture of two Gaussians, the parameter is θ := (η, µ1, µ2)> and the model is the family of
distributions of the form

pθ(x) =

2∑
j=1

pθ(x, Z = j) =

2∑
j=1

pθ(x | Z = j)P(Z = j) = ηpµ1
(x) + (1− η)pµ2

(x),

for all η ∈ [0, 1], µ1, µ2 ∈ Rd. Here, η is called the mixing coefficient.

The above example is a type of mixture model.

Definition 4.7. A mixture model has a density that is a convex combination of a set of component densi-
ties. It is finite if there are finitely many components and infinite if there are infinitely many components.

We continue with the mixture of two Gaussians before moving to general mixture models.
The log-likelihood does not involve the Zi because they are unobserved. The following is the marginal

log-likelihood; this is contrast to the complete log-likelihood which replaces pθ(xi) with pθ(xi, zi).

`M(θ) :=

n∑
i=1

log pθ(xi)

=

n∑
i=1

log(ηpµ1
(xi) + (1− η)pµ2

(xi))

=

n∑
i=1

log

(
η

1√
2π
e−(xi−µ1)2/2 + (1− η)

1√
2π
e−(xi−µ2)2/2

)
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However, this function is non-convex and difficult to maximize using previous approaches. What alternatives
do we have? Guess and check is a simple method. Gradient ascent is better (but requires several trials to
attempt to avoid local optima). In applications, we typically use the EM algorithm.

Remark: the EM algorithm is not theoretically better than guess and check or gradient ascent, but in
practice it is better. Moreover, it relies on the structure of the log-likelihood and the statistical model;
although unlike the other two methods, the EM algorithm cannot be used to maximize general functions, it
does utilize the structure of the log-likelihood much better.

We provide the intuition of the EM algorithm in two equivalent forms.

• Block coordinate ascent. Suppose we want to solve maxx,y f(x, y). Initialize y(1) randomly. For
t = 1, 2, . . ., perform the following updates repeatedly until convergence.

x(t+1) ← argmax
x

f(x, y(t))

y(t+1) ← argmax
y

f(x(t+1), y)

By the monotone convergence theorem, convergence is guaranteed if f is bounded from above. Note
however this only guarantees convergence to a local maximum and not necessarily to the global maxi-
mum.

• Minorization-maximization strategy. Let f be a function we want to maximize. Initialize x(1),
find a function ψ1 that is easy to maximize and everywhere less than or equal to f . Let x(2) be the
maximizer of ψ1, and continue.

We now provide the rough intuition behind the EM algorithm for the mixture of two Gaussians.
Part 1. If Z1, . . . , Zn are known, how do we update θ? Then this is simply classification; use MLE with

the complete likelihood. Let n1 :=
∑n
i=1 1{Zi = 1} and n2 := n− n1.

`C(θ) :=

n∑
i=1

log pθ(Xi, Zi)

=
∑
i:Zi=1

[log pθ(Xi | Zi = 1)Pη(Zi = 1)] +
∑
i:Zi=2

[log pθ(Xi | Zi = 2)Pη(Zi = 2)]

=
∑
i:Zi=1

log(ηpµ1(Xi)) +
∑
i:Zi=2

log((1− η)pµ2(Xi))

= n1 log η + n2 log(1− η) +
∑
i:Zi=1

log pµ1(Xi) +
∑
i:Zi=2

log pµ2(Xi)

∂`C(θ)

∂η
=
n1

η
− n2

1− η
∂`C(θ)

∂µ1
=
∑
i:Zi=1

∂

∂µ1

(
−1

2
(Xi − µ1)2 + log

1√
2π

)

=

n∑
i=1

1{Zi = 1}(Xi − µ1)

= −n1µ1 +

n∑
i=1

1{Zi = 1}Xi

Setting the partial derivatives to zero gives

η̂ :=
n1

n
=

1

n

n∑
i=1

1{Zi = 1}

µ̂1 :=

∑n
i=1 1{Zi = 1}Xi

n1
=

∑n
i=1 1{Zi = 1}Xi∑n
i=1 1{Zi = 1}

µ̂2 :=

∑n
i=1 1{Zi = 2}Xi

n2
=

∑n
i=1 1{Zi = 2}Xi∑n
i=1 1{Zi = 2}
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Part 2. If we are only given θ, how can we update Z1, . . . , Zn? An obstacle is that the Z1, . . . , Zn are
random variables, not fixed quantities like parameters. Instead, we could seek something like P(Zi = 1 |
X1, . . . , Xn) or E[Zi | X1, . . . , Xn]. Note that if we know the probability distribution we can compute the
expectation, but the reverse is only possible in the case when Zi takes on two values. In the EM algorithm
we seek the probability distribution, not the expectation.5

Pθ(Zi = 1 | X1, . . . , Xn) = Pθ(Zi = 1 | Xi)

=
pµ1

(Xi | Zi = 1)Pη(Zi = 1)

pµ1(Xi | Zi = 1)Pη(Zi = 1) + pµ2(Xi | Zi = 2)Pη(Zi = 2)

=
ηpµ1

(Xi)

ηpµ1(Xi) + (1− η)pµ2(Xi)

=
ηe−(xi−µ1)2/2

ηe−(xi−µ1)2/2 + (1− η)e−(xi−µ2)2/2

Pθ(Zi = 2 | X1, . . . , Xn) =
(1− η)e−(xi−µ2)2/2

ηe−(xi−µ1)2/2 + (1− η)e−(xi−µ2)2/2

So, we have found P(Zi = 1 | X1, . . . , Xn) = E[1{Zi = 1} | X1, . . . , Xn].
Part 3. If we only know the value of P(Zi = 1 | X1, . . . , Xn) = E[1{Zi = 1} | X1, . . . , Xn], how do we

update θ? If we make a choice of Zi (either by choosing the more likely outcome or by sampling) and repeat
Part 1, convergence of the whole algorithm is unfortunately not guaranteed. Instead, we take the results of
Part 1, and replace all the indicator random variables with expectations. [We will justify this later.]

η̂ :=
1

n

n∑
i=1

E[1{Zi = 1} | X1, . . . , Xn]

µ̂1 :=

∑n
i=1 E[1{Zi = 1} | X1, . . . , Xn]Xi∑n
i=1 E[1{Zi = 1} | X1, . . . , Xn]

µ̂2 :=

∑n
i=1 E[1{Zi = 1} | X1, . . . , Xn]Xi∑n
i=1 E[1{Zi = 1} | X1, . . . , Xn]

Example 4.8 (Complete EM algorithm for mixture of two Gaussians). Initialize θ(1) := (η(1), µ
(1)
1 , µ

(1)
2 )>.

For t = 1, 2, . . .,

• E step.

γ
(t+1)
i,1 := Pθ(t)(Zi = 1 | X1, . . . , Xn) =

η(t)p
µ
(t)
1

(Xi)

η(t)p
µ
(t)
1

(Xi) + (1− η(t))p
µ
(t)
2

(Xi)

γ
(t+1)
i,2 := 1− γ(t+1)

i,1 .

• M step.

η(t+1) :=
1

n

n∑
i=1

γ
(t+1)
i,1

µ
(t+1)
1 :=

∑n
i=1 γ

(t+1)
i,1 Xi∑n

i=1 γ
(t+1)
i

µ
(t+1)
2 :=

∑n
i=1 γ

(t+1)
i,2 Xi∑n

i=1 γ
(t+1)
i,2

5Why is the EM algorithm called “expectation maximization” then? It may be because P(Zi = 1 | X1, . . . , Xn) = E[1{Zi =
1} | X1, . . . , Xn]. It may also be because we maximize the expected complete log likelihood, as we will see later.
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Repeat until convergence of the marginal log-likelihood.

Example 4.9 (Mixture of K Gaussians). Let Z ∼ Multi(η0, . . . , ηK−1), i.e., P(Z = j) = ηj for j =

0, . . . ,K − 1 where ηj ≥ 0 and
∑K−1
j=0 ηj = 1.

We will also extend to multivariate Gaussian distributions with unknown covariance. X | (Z = j) ∼
Nd(µj ,Σj).

Note that taking K = 2 will give exactly the same algorithm as the previous example.
Let

θ := (η0, . . . , ηK−1, µ0, . . . , µK−1,Σ0, . . . ,ΣK−1).

Initialize θ(1). For t = 1, 2, 3 . . .,

• E step. For all 1 ≤ i ≤ n and 0 ≤ j ≤ K − 1, define

γ
(t+1)
i,j := Pθ(t)(Zi = j | X1, . . . , Xn) =

η
(t)
j p

µ
(t)
j ,Σ

(t)
j

(Xi)∑K−1
`=0 η

(t)
` p

µ
(t)
` ,Σ

(t)
`

(Xi)
.

• M step. For each j = 0, . . . ,K − 1,

η
(t+1)
j :=

1

n

n∑
i=1

γ
(t+1)
i,j

µ
(t+1)
j :=

∑n
i=1 γ

(t+1)
i,j Xi∑n

i=1 γ
(t+1)
i,j

Σ
(t+1)
i,j :=

∑n
i=1 γ

(t+1)
i,j (Xi − µ(t+1)

j )(Xi − µ(t+1)
j )>∑n

i=1 γ
(t+1)
i,j

Repeat until convergence of the marginal log-likelihood.

Formal derivation of the EM algorithm (minorization-maximization perspective). We want
to maximize `M(ψ). We initialize ψ(0). We find a “lower bound” function F0(ψ) that satisfies

• F0 ≤ `M,

• F0(ψ(0)) = `M(ψ(0)).

Let ψ(1) := argmaxψ F0(ψ). Define F1 in a similar way, repeat.
Our goal is, given random samplesX1, . . . , Xn, to fit a finite mixture model where Z ∼ Multi(η0, . . . , ηK−1)

and X | (Z = j) ∼ pθj .

pψ(X) =

K−1∑
j=0

pθj (X) · ηj

ηj = P(Z = j)

pθj (x) = p(x | Z = j).

We want to infer ψ := (θ0, η0, θ1, η1, . . . , θK−1, ηK−1)> and Z1, . . . , Zn by maximizing the marginal log-
likelihood

`M(ψ) :=

n∑
i=1

log pψ(Xi).

For j = 0, . . . ,K − 1 we will define
γi,j := Pψ(Zi = j | Xi). (3)

Note that
∑K−1
j=0 γi,j = 1, and moreover, for each fixed i, the vector (γi,0, . . . , γi,K−1) is a distribution for

Zj .
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Theorem 4.10 (Jensen’s inequality).
logE[X] ≥ E[logX].

For intuition, it is easy to see from a plot of the log function that log x1+x2

2 ≥ log(x1)+log(x2)
2 , due to the

concavity of the log function.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-1

-0.5

0.5

1

Figure 7: log 2+4
2 ≥

log(2)+log(4)
2

Given the current parameter ψ(t), we want to find a lower bound function Ft(ψ) such that

• Ft ≤ `M,

• Ft(ψ(t)) = `M(ψ(t)).

The following holds for any γ := {{γi,j}ni=1}
K−1
j=0 satisfying γi,j ≥ 0 and

∑K−1
j=0 γi,j = 1, so in particular

it holds for γi,j as defined in (3).

`M(ψ) =

n∑
i=1

log pψ(Xi)

=

n∑
i=1

log

K−1∑
j=0

pψ(Xi, Zi = j)


=

n∑
i=1

log

K−1∑
j=0

γi,j
pψ(Xi, Zi = j)

γi,j


=

n∑
i=1

logEZi
[
pψ(Xi, Zi)

γi,j

]
“let” Zi ∼ Mult(γi,0, . . . , γi,K−1)

≥
n∑
i=1

EZi
[
log

pψ(Xi, Zi)

γi,j

]
Jensen’s inequality

=

n∑
i=1

K−1∑
j=0

γi,j log
pψ(Xi, Zi = j)

γi,j

=: Q(γ, ψ)
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Thus, Q(γ, ψ) is a lower bound for `M , for any ψ and any γ satisfying γi,j ≥ 0 and
∑K−1
j=0 γi,j = 1.

In general, Q(γ, ψ) is easy to maximize, especially for distributions from the exponential family.

We define Ft(ψ) := Q(γ(t+1), ψ), where γ
(t+1)
i,j := Pψ(t)(Zi = j | Xi). Note that we have shown that

Ft ≤ `M, but we have not yet shown that the choice of γ(t+1) gives Ft(ψ
(t)) = `M(ψ(t)).

Ft(ψ
(t)) =

n∑
i=1

K−1∑
j=0

Pψ(t)(Zi = j | Xi) log
pψ(t)(Xi, Zi = j)

Pψ(t)(Zi = j | Xi)

=

n∑
i=1

K−1∑
j=0

Pψ(t)(Zi = j | Xi) log pψ(t)(Xi)

=

n∑
i=1

log pψ(t)(Xi)

K−1∑
j=0

Pψ(t)(Zi = j | Xi)

=

n∑
i=1

log pψ(t)(Xi)

= `M(ψ(t)).

In particular, our definition of γ
(t+1)
i,j := Pψ(t)(Zi = j | Xi) is precisely argmaxγ Q(γ, ψ(t)).

This yields the block coordinate ascent interpretation of the EM algorithm. Initialize ψ(0). For t =
1, 2, . . .,

• E step.
γ(t+1) := argmax

γ
Q(γ, ψ(t)) = Pψ(t)(Zi = j | Xi).

• M step.
ψ(t+1) := argmax

ψ
Q(γ(t+1), ψ).

The minorization-maximization perspective is similar.

• E step.

γ(t+1) := argmax
γ

Q(γ, ψ(t)) = Pψ(t)(Zi = j | Xi).

We define Ft(ψ) := Q(γ(t+1), ψ), and note that we have shown that Ft ≤ `M and that Ft(ψ
(t)) =

`M(ψ(t)).

• M step.

ψ(t+1) := argmax
ψ

Ft(ψ).

Theorem 4.11. Under the finite mixture model pψ(x) =
∑K−1
j=0 ηj · pθj (x) (see above), at the tth iteration

of the EM algorithm (where we know ψ(t)) we do the following.

• E step. Compute γ
(t+1)
i,j = Pψ(t)(Zi = j | Xi).

• M step. Set

η
(t+1)
j :=

1

n

n∑
i=1

γ
(t+1)
i,j

θ
(t+1)
j := argmax

θj

n∑
i=1

γ
(t+1)
i,j log pθj (Xi)
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[Note that pθj (Xi) := pψ(Xi | Z = j).]

Note that the M step is simply maximizing the expected complete log-likelihood.

Proof. The E step is clear from the above derivation. For the M step,

Ft(ψ) =

n∑
i=1

K−1∑
j=0

γ
(t+1)
i,j log

pψ(Xi, Zi = j)

γ
(t+1)
i,j

.

We can optimize the θj separately.

θ
(t+1)
j := argmax

θj

n∑
i=1

γ
(t+1)
i,j log pθj ,ηj (Xi, Zi = j)

= argmax
θj

n∑
i=1

γ
(t+1)
i,j log pθj (Xi | Zi = j) · ηj

= argmax
θj

n∑
i=1

γ
(t+1)
i,j log pθj (Xi | Zi = j)

= argmax
θj

n∑
i=1

γ
(t+1)
i,j log pθj (Xi). definition

For η,

Ft(ψ) =

n∑
i=1

K−1∑
j=0

γ
(t+1)
i,j log

pψ(Xi | Zi = j)ηj

γ
(t+1)
i,j

,

so

η(t+1) = argmax
η0,...,ηK−1

n∑
i=1

K+1∑
j=0

γ
(t+1)
i,j log ηj subject to

K−1∑
j=0

ηj = 1.

The Lagrangian form is

n∑
i=1

K−1∑
j=0

γ
(t+1)
i,j log ηj − α

−1 +

K−1∑
j=0

ηj

.
Taking the derivative w.r.t. ηj and setting it equal to zero gives

α =
1

η̂j

n∑
i=1

γ
(t+1)
i,j ,

and this holds for all j. Noting that

1 =

K−1∑
j=0

η̂j =
1

α

K−1∑
j=0

n∑
i=1

γ
(t+1)
i,j =

n

α
,

we have

η̂j =
1

n

n∑
i=1

γ
(t+1)
i,j .
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Finally, we would like to show that the EM algorithm converges.

Theorem 4.12. Let (ψ(t))∞t=0 be the sequence generated by the EM algorithm. Then

`M(ψ(t)) ≤ `M(ψ(t+1)).

Proof.

`M(ψ(t)) = Ft(ψ
(t)) def. of Ft

≤ Ft(ψ(t+1)) ψ(t+1) := argmax
ψ

Ft(ψ)

≤ `M(ψ(t+1)). def. of Ft

Corollary 4.13 (Convergence of the EM algorithm). When the marginal likelihood `M is bounded from
above, then the EM algorithm converges.

Proof. This is immediate from the previous theorem and the monotone convergence theorem.

Example 4.14 (EM algorithm for the mixture of K Gaussians).

Z ∼ Multi(η0, . . . , ηK−1)

X | (Z = j) ∼ N (µJ ,Σj).

Want to infer θ := {η0, . . . , ηK−1, µ0, . . . , µK−1,Σ0, . . . ,ΣK−1).
Initialize θ(0).

• E step.

γ
(t+1)
i,j := Pθ(t)(Zi = j | Xi) =

η(t)p
µ
(t)
j ,Σ

(t)
j

(Xi)∑K−1
`=0 η(t)p

µ
(t)
` ,Σ

(t)
`

(Xi)

• M step.

η
(t+1)
j :=

1

n

n∑
i=1

γ
(t+1)
i,j

µ
(t+1)
j :=

∑n
i=1 γ

(t+1)
i,j Xi∑n

i=1 γ
(t+1)
i,j

Σ
(t+1)
i,j :=

∑n
i=1 γ

(t+1)
i,j (Xi − µ(t+1)

j )(Xi − µ(t+1)
j )>∑n

i=1 γ
(t+1)
i,j

4.3 K-means algorithm

Definition 4.15. The K-means algorithm is the limiting procedure by applying the EM algorithm on
a sequence of mixtures of K isotropic (spherical) Gaussians which become degenerate (variance shrinks to
zero).

An isotropic (spherical) Gaussian distribution is a Gaussian distribution whose covariance matrix is
of the form σ2Id.

Let

Z ∼ Multi(η0, . . . , ηK−1)

X | (Z = j) ∼ N (µj , σ
2I).
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Note that not only is each conditional distribution isotropic, but also all the conditional distributions have
the same covariance matrix σ2I.

Taking σ2 → 0 will make the mixture of Gaussians tend to K point masses (degenerate).
For the “E step” of the K-means algorithm,

γ
(t+1)
i,j :=

ηj exp
(
−‖Xi−µj‖22

2σ2

)
∑K−1
`=0 η` exp

(
−‖Xi−µ`‖22

2σ2

)
= ηj

(
K−1∑
`=0

η` exp

(
‖Xi − µj‖22 − ‖Xi − µ`‖22

2σ2

))−1

Taking σ2 → 0 gives

γi,j = 1{‖Xi − µj‖22 < ‖Xi − µ`‖22 for every ` 6= j},

i.e., let γi,j be 1 if and only if µj is the closest cluster center to Xi. [In the unlikely case where there is more
than one index that give the smallest 2-norm, then just randomly pick one.] Then, P(Zi = j | Xi) is either
0 or 1, so we can just “set” the value of Zi at this step. This is a “hard” assignment of Zj in contrast to the
“soft” assignment in the EM algorithm, where the condition distribution is more general.

So, we define γi,j := 1{Zi = j}. Note that to do the E-step, the only information we need is µ
(t)
0 , . . . , µ

(t)
K−1.

We do not need η
(t)
0 , . . . , η

(t)
K−1 or σ2.

For the “M step” of the K-means algorithm, the updating rule is the same as the EM algorithm, but
only needed for µ0, . . . , µK−1.

µ
(t+1)
j :=

∑n
i=1 γi,jXi∑n
i=1 γi,j

=

∑n
i=1 1{Zi = j}Xi∑n
i=1 1{Zi = j}

The formal description of the K-means algorithm is as follows. Initialize µ
(0)
0 , . . . , µ

(0)
K−1. For t =

0, 1, 2, 3 . . .,

• E step. For i = 1, . . . , n and j = 0, . . . ,K − 1, set

γ
(t+1)
i,j := 1{‖Xi − µj‖22 < ‖Xi − µ`‖22 for every ` 6= j}.

• M step. For j = 0, . . . ,K − 1, set

µ
(t+1)
j :=

∑n
i=1 γi,jXi∑n
i=1 γi,j

Repeat until convergence. [We have not yet proved that this converges.]

K-means EM

Model mixture of K isotropic Gaussians mixture of K Gaussians
limiting operation (mysterious)

Initialization randomly initialize µ0, . . . , µK−1 Initialize µ0, . . . , µK−1 using K-means.
For the ηj and Σj , assign points to closest µj
take sample proportion and sample covariance

We have just described the model-based derivation of the K-means algorithm. It is not clear from the
limiting formulation that this is guaranteed to converge. We now present the risk-based perspective, which
is equivalent to the model-based perspective, and from which we can prove convergence.

The goal is to choose K cluster centers to minimize

R̂(µ0, . . . , µK−1) :=
1

n

n∑
i=1

min
0≤j≤K−1

‖Xi − µj‖22
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This objective function is very natural: given cluster centers, we assign each point to the closest cluster center
and its “badness” is the sum of the squared distances to the corresponding cluster centers. The minimum
makes this optimization problem NP-hard.

Note that this corresponds to the population risk

R(µ0, . . . , µK−1) := E
[

min
0≤j≤K−1

‖Xi − µj‖22
]

The following is an equivalent form of the K-means optimization.

min
Zi∈{0,...,K−1},

i=1,...,n
µ0,...,µK

1

n

n∑
i=1

‖Xi − µZi‖22.

Introducing the extra parameters Zi allows us to use block coordinate ascent. Let this objective function
be F (Z, µ) where Z = (Z1, . . . , Zn) and µ = (µ0, . . . , µK−1). We show that the risk-based perspective is
equivalent to the model-based perspective.

Initialize µ
(0)
0 , . . . , µ

(0)
K1

. For t = 0, 1, 2, . . .

• E step. If we have µ and want to update Z, then let Zi be such that µZi is the closest cluster center
to Xi. For all i = 1, . . . , n,

Z
(t+1)
i := argmin

0≤j≤K−1
‖Xi − µ(t)

j ‖
2
2

• M step. If we have Z and want to update µ, then just let µj be the center of the points Xi that
belong to cluster Zj . For j = 0, . . . ,K − 1,

µ
(t+1)
j :=

∑n
i=1 1{Z(t+1)

i = j}Xi∑n
i=1 1{Z(t+1)

i = j}
.

Theorem 4.16. The K-mean algorithm converges.

Proof. It is easy to show that the objective function 1
n

∑n
i=1‖Xi − µZi‖22 is nonincreasing with each E step

and M step. Since it is bounded from below by zero, the monotone convergence theorem implies that it
converges.

4.4 Extensions

Example 4.17 (Hidden Markov model).

Zi ∼ Ber(η)

Xi | (Zi = j) ∼ N (µj ,Σj) j ∈ {0, 1}
P(Zk = j | Zk−1 = `) = θj,` Markov chain

Can compute MLE using EM.

Example 4.18 (Factor model).

Z ∼ N (0, Ik)

X | Z ∼ N (µ+ ΛZ,ψ) ψ is diagonal

This is an infinite mixture model because Z is continuous. Still can find MLE using EM.

Example 4.19 (Principal Component Analysis (PCA)).

Z ∼ N (0, Ik)

X | Z ∼ N (µ+ ΛZ, σ2Id)

Taking σ2 → 0, the MLE from EM is PCA.
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