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1 Search

Intelligent agents perceive and act on an environment to achieve a goal. Their actions have costs.
We can formulate/model a problem using using a state space, where actions are transitions between states.
A path is a sequence of actions, and a path cost is the sum of the costs of the actions on the path.

In tree search, we pick a node of the frontier, expand it, and add its successors to the frontier. A drawback
of tree search is that a state may be visited multiple times. This motivates keeping an explored set. In graph
search, the frontier separates the explored set from the unexplored set.

An algorithm is complete if it is guaranteed to find a solution when one exists. An algorithm is optimal
if the solution it returns has the lowest possible path cost. We should also consider time complexity and
space complexity.

1.1 Uninformed search strategies

Uninformed search (or blind search) means that the strategies can only generate successors and
check if a state is a goal state.

Breadth-first search expands nodes based on proximity to the root node. In tree search, it expands each
level exhaustively, while in graph search it expands by widening radius. This is done by storing the frontier
as a queue. It is complete if the branching factor is finite. It is optimal if the path cost is a nondecreasing
function of the depth of the node (for example, all actions having the same cost). The number of nodes
generated (time complexity) for a b-ary tree when the solution is at depth d is b + · · · + bd = O(bd) if the
algorithm applies the goal test on a node when generated. If the goal test is applied when selected for
expansion, then the time complexity would be O(bd+1). There will be O(bd−1) nodes in the explored set and
O(bd) nodes in the frontier, so the space complexity is O(bd). The time and space complexity of BFS are
very bad, although in practice the space complexity is a bigger problem.

Uniform-cost search expands node with the lowest path cost g(n), implemented by storing the frontier
as a priority queue. The goal test must be applied when a node is selected for expansion rather than when
it is first generated because (a) the first goal node generated may be on a suboptimal path, and (b) there
may be a better path found to a node currently on the frontier. UCS is clearly optimal. Completeness
follows as well, provided that the costs are > ε (possible to get stuck in an infinite sequence of zero-cost
actions). Let C∗ be the cost of the optimal solution, and assume every action has cost > ε. The time and
space complexities are O(b1+bC∗/εc) which can be much greater than bd, since UCS may get bogged down
in low-cost useless steps before looking at large-cost useful steps. When path costs are equal, UCS is almost
identical to BFS.

Depth-first search expands the last node added to the frontier (stack or a priority queue with depth
as a priority). In graph search, DFS is complete in finite spaces; in tree search, DFS is not complete. In
all cases, it is nonoptimal. In graph search, the time complexity is bounded by the size of the state space
(possibly infinite). In tree search, it could generate all O(bm) nodes of the search tree (where m is the
maximum depth, possibly infinite), which can be much larger than the size of the state space. Note that m
can be larger than d, the depth of the best solution. DFS’s advantage is in saving space; it needs only store
a single path along with unexpanded sibling nodes along the path. Thus the space complexity is O(bm)
for tree search. In graph search, the explored set still takes up space, so it possibly may need to remember
everything: O(bm).

Depth-limited search treats nodes some given limit ` as having no successors. It is incomplete if ` < d;
it is nonoptimal in general (but is optimal when d = `). Its time complexity is b+ b2 + · · ·+ b` = O(b`), and
its space complexity is O(b`) for tree search and O(b`) for graph search.

Iterative deepening depth-first search performs DLS for ` = 0, 1, 2, . . . in that order, until a goal
is found. Its space complexity is O(bd) for tree search and O(bd) for graph search. It is complete when
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the branching factor is finite and optimal when the path cost is a nondecreasing function of the depth of
the node. It may seem wasteful to go over the same nodes in the top level every time, but it is not so bad
because most of the nodes are at the bottom level. The bottom level is generated once, the next-to-bottom
level is generated twice, and so on, so the time complexity is (d+ 1) + db+ · · · 2bd−1 + bd = O(bd).

Bidirectional search requires reversible actions, and checks whether the frontiers of the forward and
backward searches meet. The motivation is that bd/2 + bd/2 is much smaller than bd.

Criterion BFS UCS DFS DLS IDDFS Bidirectional
Complete Y Y* N N Y* Y*
Optimal Y* Y N N Y* Y*

Time O(bd) O(b1+bC∗/εc) state space or O(bm) O(b`) O(bd) O(bd/2)

Space O(bd) O(b1+bC∗/εc) O(bm) or O(bm) O(b`) or O(b`) O(bd) or O(bd) O(bd/2)

1.2 Informed (heuristic) search strategies

In informed search, we use problem-specific knowledge beyond the definition of the problem itself to
find solutions more efficiently. The general approach is best-first search, which is an instance of tree search
or graph search in which an evaluation function f(n) determines which node is selected for expansion.
The evaluation function acts as a cost estimate, so the node with the lowest evaluation is expanded first.
This is identical to UCS, except f is used instead of g.

Most algorithms include a heuristic function h(n) as a component when defining f . The heuristic
function is the estimated cost of the cheapest path from n to a goal state.

Greedy best-first search is the case where f(n) := h(n). Due to the greediness, it is not optimal. It
is incomplete (except for graph search in finite spaces).

A* search uses the evaluation function f(n) := g(n) + h(n).
A heuristic is admissible if it never overestimates the cost to reach the goal. As a result, f(n) =

g(n) + h(n) never overestimates the true cost of a solution going through the current path to n. We impose
the conditions that h must be nonnegative and h(n) = 0 if n is a goal node.

A heuristic is consistent or monotonic if h(n) ≤ c(n, a, n′)+h(n′). A consistent heuristic is admissible.

Theorem 1.1. Tree search A* is optimal if h(n) is admissible.

Proof. Suppose n is a goal state, and suppose for sake of contradiction that n′ is another goal state.
Somewhere along the path to n′, there must have been a node n′′ that was not expanded. Noting that
h(n) = h(n′) = 0 because they are goal nodes, we have

g(n) = f(n)
A*
≤ f(n′′) = g(n′′) + h(n′′)

admiss.
≤ g(n′′) + c(n′′ → n′) = g(n′).

The proof in the case of graph search is a result of the following lemmas.

Lemma 1.2. If h(n) is consistent, then the values of f(n) along any path are nondecreasing.

Proof. f(n′) = g(n′) + h(n′) = g(n) + c(n, a, n′) + h(n′) ≥ g(n) + h(n) = f(n)

Lemma 1.3. Whenever graph search A* selects a node n for expansion, the optimal path to that node has
been found.

Proof. If not, then there would have to be another frontier node n′ on the true optimal path to n, by the
graph separation property. Since f is nondecreasing along the subpath n′ → n of the optimal path, it must
be that f(n′) ≤ f(n′ → n) < f(n) so that n′ should have been chosen by A* at this point rather than n, a
contradiction.

Theorem 1.4. Graph search A* is optimal if h(n) is consistent.
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Proof. For graph search, A* expands nodes in nondecreasing order of f(n); thus, the first goal node chosen
for expansion will have path cost g(n) = f(n) less than any later goal node.

We may draw contours for f in the state space. If C∗ is the cost of the optimal solution path, then A*
expands all nodes with f(n) < C∗, some nodes with f(n) = C∗, and no nodes with f(n) > C∗. Completeness
thus requires that there be finitely many nodes with cost at most C∗, which is true if b < ∞ and all step
costs are > ε.

A* is optimally efficient for any given consistent heuristic: no other optimal algorithm is guaranteed
to expand fewer nodes than A* except possibly through tie-breaking among nodes with f(n) = C∗. This is
becuase any algorithm that does not expand all nodes with f(n) < C∗ runs the risk of missing the optimal
solution.

In practice, the number of states within the goal contour can be exponential in the length of the solution;
memory runs out. One solution is iterative-deepening A*, where the cutoff value is the smallest f -cost
of any node that exceeded the cutoff on the previous iteration. Another is recursive best-first search,
where the second-best alternative is stored and invoked when the current value of f exceeds some limit.
SMA*expands the best leaf until memory is full, and then drops the worst leaf node. It also backs up the
value of the forgotten node in its parent, so that despite not knowing which way to go from the parent, we
still have an idea of how worthwhile it is to go anywhere from n.

1.3 Heuristic functions

A heuristic h2 dominates h1 if h2(n) ≥ h1(n).

Proposition 1.5. If h2 dominates h1, then A* using h2 will never expand more nodes than A* using h1.

Proof. Every node with h(n) < C ∗ −g(n) will be expanded. So any node expanded by h2 will be expanded
by h1.

It is generally better to use a heuristic with higher values.
One way to get heuristic functions is to relax the problem. (Manhattan distance, straight-line distance).
Given admissible heuristics h1, . . . , hm, the composite heuristic h(n) := max{h1(n), . . . , hm(n)} domi-

nates all of them and is also admissible.
Another way is to use the solution cost of a subproblem (e.g. in 8-puzzle, getting 1,2,3 into place). Then

we can use pattern databases to store these solution costs for every possible instance of the subproblem,
and combine it with other pattern databases.

1.4 Local search and optimization

In some cases, we are not concerned with the path to the solution. Local search algorithms use a single
current node, rather than multiple paths, and move to neighbors. Although they are not systematic, their
key advantages are lower memory and the ability to find reasonable solutions in large or infinite (continuous)
state spaces for which systematic algorithms are unsuitable. They are also useful to solve pure optimization
problems which finds the best state according to an objective function; these problems often do not fit
the standard search model. For example, reproductive fitness could be an objective function for evolution,
but there is no goal test nor path cost.

We consider the state-space landscape, a plot of the objective function vs states. Our aim is to find
a global maximum or minimum. A complete local search algorithm always finds a goal if one exists,
while an optimal one always finds the global min or max.

The hill-climbing or steepest-ascent version simply moves in the direction of the best neighbor,
forgetting the past and not looking any farther into the future. It stops upon reaching a peak, where no
neighbors have higher value. It gets stuck at local maxima and plateaux, and has difficulty navigating
ridges (a sequence of local maxima not directly connected with each other). If we allow sideways moves,
we may be able to exit a plateau, but run the risk of staying in an infinite loop; to combat this, we may
put a limit on the number of sideways moves. Stochastic hill climbing chooses a neighbor at random
(or with probability weighted with the steepness). First-choice hill climbing is an example; it generates
successors randomly and chooses the first one that is better than the current state. Random-restart hill
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climbing performs hill climbing from different randomly chosen initial states. If each hill-climbing search
has a probability p of success, then the expected number of restarts required is 1/p.

Simulated annealing can be compared to the task of getting a ping-pong ball into the lowest crevice
in a bumpy surface. (Here, we switch to gradient descent, i.e., minimizing cost instead of maximizing the
objective function.) If we let the ball roll, it will stop at a local minimum, but if we shake the surface, it
can pop out of the local minimum, but we must be careful to shake too hard and dislodge it from the global
minimum. This is implemented by choosing a random neighbor, and accepting it if it improves the situation,
or accepting it with some probability if it worsens the situation.

Local beam search keeps track of k states rather than just one; at each point it chooses the k best
successors. It is not the same as k random restarts because it aggregates information from all k nodes; it can
gravitate the search to a certain part of the space. Local beam search can suffer if the k states converge on
the same region; a variant called stochastic beam search alleviates the problem by making the probability
of choosing a givn successor as an increasing function of its value.

A genetic algorithm is a variant of stochastic beam search in which the successor states are generated by
combining two parent states rather than by modifying a single state. A fitness function rates the goodness
of a state. Given a randomly selected population of k states, two states are chosen (with probability
corresponding to their fitness) to be parents. They create a child state that is a combination of the parents
in some sense. Finally, the child state is given a mutation with small probability.

1.5 Adversarial search and games

We consider deterministic, turn-taking, two-player, zero-sum games of perfect information, like chess.
A utility function defines the final numeric value for a game that ends in a terminal state. A zero-sum
game is such that the total payoff to all players is the same (not necessarily zero) for any instance of the
game. We can represent the sequences of moves as a search tree.

We take the role of max playing against min. The minimax value of a node is the utility of being in
the state, assuming that both players play optimally from there until the end of the game. The minimax
value of a terminal state is its utility. Otherwise, it is the maximum (resp. minimum) minimax value of all
possible moves that max (resp. min) could make.

Minimax(s) =


Utility(s) if s is a terminal node

maxa∈Actions(s) Minimax(Result(s, a)) if it is max’s turn’

mina∈Actions(s) Minimax(Result(s, a)) if it is min’s turn’

The minimax algorithm computes the best decision recursively, backing up the minimax values of each
state in the tree.

To generalize to games with more than two players, the utility can be instead a k-tuple, with each player
trying to maximize a certain component of the tuple.

Alpha-beta pruning is a way to avoid searching the entire tree. At all nodes, we keep track of the
interval that its utility lies in. At first, we initialize the intervals to [−∞,+∞], but with more information,
we can update. For example, if a min node sees that one of its children has value 3, then we can update the
range of the min node to [−∞, 3]. Armed with these intervals, we can avoid searching parts of the tree if
we know that it is hopeless. α is the value of best (highest) choice at any choice point along the path for
max, while β is the value of the best (lowest) choice along the path for min. We want large α and small β
to prune more.

The effectiveness of this pruning depends highly on the order in which the states are examined. This can
reduce the time complexity from O(bm) (minimax) to O(bm/2) (alpha-beta).

It may be useful to store the utility of previously seen positions: transposition table.
Instead of calculating the utility exactly, we can use a heuristic evaluation function instead to estimate

the utility. We determine a cut off point for the search, at which we call the evaluation function instead of
calculating utility. This may be problematic, as something very bad can happen just beyond the cutoff. We
should apply the evaluation function only to positions that are quiescent (unlikely to exhibit wild swings
in the near future).

5



Algorithm 1 Alpha-beta search

function Alpha-beta(state)
v ← Max-value(state,−∞,+∞)
return action with value v

function Max-value(state, α, β)
if terminal state then

return utility

v ← −∞
for all action a do

v ← max(v,Min-value(Result(s, a), α, β))
if v ≥ β then return v

α← max(α, v)

function Max-value(state, α, β)
if terminal state then

return utility

v ← +∞
for all action a do

v ← min(v,Max-value(Result(s, a), α, β))
if v ≤ α then return v

β ← max(β, v)

Another problem is the horizon effect, in which an opponent’s move causes serious damage and is
inevitable, but can be temporarily avoided. This is problematic because the algorithm could push the bad
result beyond the cutoff point.

One way to mitigate the horizon effect is the singular extension, a move that is clearly better than all
other moves in a given position. If found before, the singular move is saved, and when the search reaches
the depth limit, it considers the singular move if it is legal.

In games such as chess, it is very useful to use lookup tables for the opening and the endgame instead
of search.

2 Logical agents

A knowledge base is a set of sentences. The sentences are expressed according to the syntax of the
representation language, which specifies all the sentences that are [defined to be] well-formed. A logic must
define the semantics (meaning) of sentences. The semantics defines the truth of each sentence with respect
to each model (possible world). If a sentence α is true in model m, we say m satisfies α. We write α |= β if
sentence α entails sentence β, that is, α |= β if and only if in ever ymodel in which α is true, β is also true.

Logical inference is the process of deriving conclusions from some knowledge base. One way is model
checking, which checks all possible models. We write KB `i α if an inference algorithm i can derive α
from KB. An inference algorithm is sound if it derives only entailed sentences. An inference algorithm is
complete if it can derive any sentence that is entailed.

2.1 Propositional logic

We now present a powerful logic called propositional logic. The atomic sentences consist of a single
proposition symbol, which stands for a proposition that can be true or false. Complex sentences are
constructed from simpler sentences, using parentheses and logical connectives, such are

• ¬ (not). A literal is either an atomic sentence (positive literal) or a negated atomic sentence
(negative literal).
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• ∧ (and). A sentence whose main connective is ∧ is called a conjunction.

• ∨ (or). A sentence whose main connective is ∨ is a disjunction.

• ⇒ (implies).

• ⇔ (if and only if).

We now specify its semantics, which must specify how to compute the truth value of any sentence, given
a model. Defining True to be true in every model, and False to be true in every model, we can express the
semantics in a truth table.

P Q ¬P P ∧Q P ∨Q P ⇒ Q P ⇔ Q
F F T F F T T
F T T F T T F
T F F F T F F
T T F T T T T

2.2 Propositional theorem proving

One simple inference procedure is to check all assignments to the propositional symbols. This is not
desirable because the time complexity is O(2n) where n isthe number of symbols.

Two sentences α and β are logically equivalent (denoted α ≡ β) if they are true in the same set of models.
Moreover, α ≡ β if and only if α |= β and β |= α.

We list some equivalences.

α⇒ β ≡ ¬β ⇒ ¬α (contraposition)

α⇒ β ≡ ¬α ∨ β (implication elimination)

¬(α ∧ β) ≡ ¬α ∨ ¬β (De Morgan)

¬(α ∨ β) ≡ ¬α ∧ ¬β (De Morgan)

A sentence is valid if it is true in all models; such a sentence is called a tautology.

Theorem 2.1 (Deduction theorem). α |= β if and only if the sentence (α⇒ β) is valid.

Proof. Simply check all four possible models (truth tables).

A sentence is satisfiable if it is true in some model. The problem of determining the satisfiability of
sentences in propositional logic (SAT) is NP-complete.

Theorem 2.2. α is valid if and only if ¬α is unsatisfiable.

Theorem 2.3 (Proof by contradiction). α |= β if and only if the sentence (α ∧ ¬β) is unsatisfiable.

We now discuss inference rules.

α⇒ β, α

β
(Modus Ponens)

α ∧ β
α

(And-Elimination)

α, β

α ∨ β
(Reverse And-Elimination)

Any of the logical equivalences can also be used as inference rules.
Theorem proving determines KB |= α using syntactic manipulation (inference). It is sound, but its

completeness depends on which inference rules are used. Theorem proving can be more efficient than model
checking because it can ignore irrelevant propositions, no matter how many of them there are.

This is essentially a search problem, where the goal is to find sentence α while deriving entailed sentences.
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2.3 Resolution

An algorithm is sound if returning yes implies that KB |= α. It is complete if it returns yes whenever
KB |= α. It turns out that resolution is enough to ensure completeness.

The resolution steps resolve complementary literals.

`1 ∨ · · · ∨ `k, n
`1 ∨ · · · ∨ `i−1 ∨ `i+1 ∨ · · · ∨ `k

where m and `i are complementary literals (unit resolution)

A small technical point: A ∨A should be reduced to A.
A sentence is in conjunctive normal form if it is a conjunction of clauses, where each clause is a

disjunction of literals.
We can convert any sentence of propositional logic to CNF.

1. Replace α⇔ β with (α⇒ β) ∧ (β ⇒ α).

2. Replace α⇒ β with ¬α ∨ β.

3. Use De Morgan’s law to push ¬ inside parentheses.

4. Apply distributivity of ∨ over ∧.

To show KB |= α, we show that KB ∧ ¬α is unsatisfiable. We convert KB ∧ ¬α into CNF, and resolve
complementary literals, adding the new clause to the set if not already there. The process continues until

• there are no new clauses that can be added, in which case KB 6|= α, or

• two clauses resolve to yield the empty clause (contradiction), in which case KB |= α.

The following theorem demonstrates the completeness of the resolution algorithm.

Theorem 2.4 (Ground resolution theorem). If a set of clauses is unsatisfiable, then the resolution closure
of those clauses contains the empty clause.

Proof. We define the resolution closure RC(S) of a set of clauses S := {P1, . . . , Pk} to be the set of clauses
derivable by repeated applications of the resolution rule to clauses in S or their derivatives. We will show
the contrapositive: if ∅ /∈ RC(S), then S is satisfiable under the model defined in the following way:

• If a clause in RC(S) contains the literal ¬Pi and all its other literals are false under the assignment
chosen for P1, . . . , Pi−1, then assign false to Pi.

• Otherwise, assign true to Pi.

This model satisfies S. Suppose otherwise, that at some [earliest] stage i, assigning Pi causes some clause C to
become false. This means that after assigning P1, . . . Pi−1, the clause C is either false∨false∨· · ·∨false∨Pi
or false∨ false∨ · · · ∨ false∨¬Pi. If only one of these clauses is in the set, then the algorithm would have
assigned the appropriate value to Pi to make the clause true, so it must be that both of these clauses are in
the set. Since RC(S) is closed under resolution, the resolvent of these two clauses would be in RC(S) and
would already have been falsified by the assignments P1, . . . , Pi−1, contradicting the claim the Pi was the
first assignment to falsify a clause.

A definite clause is a disjunction of literals of which exactly one is positive. A Horn clause is a
disjunction of literals of which at most one is positive. All definite clauses are Horn clauses. Goal clauses
(clauses with no positive literals) are also Horn clauses. Horn clauses are closed under resolution: the
resolvent of two Horn clauses is also a Horn clause.

Definite clauses can be written as implications:

(¬P1 ∨ ¬P2 ∨ · · · ∨ ¬Pn−1 ∨ Pn)→

((
n−1∧
i=1

Pi

)
⇒ Pn

)
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A single positive literal is called a fact.
Inference with Horn clauses can be done through forward chaining and backward chaining. Deciding

entailment with Horn clauses can be done in time linear in the size of the knowledge base.
Forward chaining determines if a single proposition symbol q, the query, is entailed by a knowledge base

of definite clauses. It begins from known facts (positive literals) in the knowledge base. If all the premises
of an implication are known, then its conclusion is added to the set of known facts. It can be depicted as a
graph, where premises point to implications. Forward chaining is sound (each inference is Modus Ponens). It
is also complete, in that every entailed atomic sentence will be derived: after no new inferences are possible,
let all inferred symbols be true and all others false. This model satisfies every definite clause in the original
knowledge base. (Suppose otherwise, then some clause a1 ∧ · · · ∧ ak ⇒ b is false, meaning that the premise
is true but b is false, contradicting the fact that there are no new possible inferences).

Backward chaining begins with the query, and goes backward until it can find a series of implications
whose premises are known.

2.4 Effective propositional model checking

The Davis-Putnam-Logemann-Loveland algorithm takes sentences in CNF and performs a recur-
sive depth-first enumeration of possible models.

• Early termination: The algorithm detects whether a sentence is true or false even with a partial model.
A clause is true if any literal is true.

• Pure symbol heuristic: A pure symbol is a symbol that always appears with the same sign in all
clauses. If there exists a model for the sentence, assigning the pure symbol to be true if it is a positive
literal (or false if it is a negative literal) will never make a clause false.

• Unit clause heuristic: A unit clause has all literals assigned to false except one, which forces an
assignment for the unassigned symbol. This in turn can force other assignments: unit propagation.

Algorithm 2 DPLL algorithm

function DPLL(clauses, symbols, model)
if every clause in clauses is true in model then

return true
if some clause in clauses is false in model then

return false

P, value← Find-Pure-Symbol(symbols, clauses,model)
if P is non-null then

return DPLL(clauses, symbols− P,model ∪ {P = value})
P, value← Find-Unit-Clause(symbols, clauses,model)
if P is non-null then

return DPLL(clauses, symbols− P,model ∪ {P = value})
P ← First(symbols)
rest← Rest(symbols)
return DPLL(clauses, rest,model ∪ {P = true}) or DPLL(clauses, rest,model ∪ {P = false})

Some improvements:

• Component analysis: if clauses become separated into disjoint subsets after assigning some variables,
it is more efficient to work on each component separately.

• Variable and value ordering: the degree heuristic suggests choosing the variable that appears more
frequently over all remaining clauses.

• Intelligent backtracking: backing up to the relevant point of conflict can be a significant improvement.
In conflict clause learning, conflicts are stored as clauses so that they will not be repeated later.
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• Random restarts

• Clever indexing: for example, indexing things like “the set of clauses in which Xi appears as a positive
literal.”

In conflict clause learning, we often build an implication graph (similar to the one in forward chaining),
and split it into a “conflict” side and a “reason” side. A unique implication point is on every path from
the last assignment to the conflict. There are various methods of splitting the implciation graph.

• 1-UIP: cut just after the implication point closest to the conflict.

• Rel Sat, aka Last-UIP: cut right before the farthest implication point (the decision variable)

• First new clause: cut close to conflict clause (nothing to do with implication points)

Conflict clause learning exhibit heavy-tail phenomena: it is fast most of the time, but there is a non-
negligible probability that it is very slow. This can be mitigated with random restarts.

There is also a backdoor phenomena: after setting a few certain variables, everything “falls into place,”
but the question is how to find these variables.

2.5 Local search

WalkSAT begins with a random model. At every iteration, it chooses an unsatisfied clause and picks a
symbol in the clause to flip. It chooses between two methods:

• flip the symbol that minimizes the number of unsatisfied clauses in the result

• pick a symbol randomly

If WalkSAT does not find a solution, it may need more time. Thus, WalkSAT is most useful when we
expect a solution to exist. However, it cannot prove unsatisfiability.

An underconstrained problem has many solutions in the space of assignments (few clauses relative
to number of variables). On the other hand, an overconstrained problem has many clauses relative to
the number of variables, and is likely to have no solutions. Letting m be the number of clauses, n be the
number of variables, and k be the number of literals per clause. We denote the set of all such clauses as
CNFk(m,n). For small m/n, the probability of satisfiability is close to 1, and for large m/n it is close to
0. The probability drops sharply at some point. The satisfiability threshold conjecture states that for
every k ≥ 3, there is a threshold ratio rk such that as m goes to infinity, the probability that CNFk(m, rm)
is satisfiable becomes 1 for all r < rk, and 0 for all r > rk. It is unproven.

3 Reasoning with uncertainty

We omit the discussion of the basics of probability.
Marginalization:

P (Y = y) =
∑
z

P (Y = y, Z = z)

Conditioning:

P (Y = y) =
∑
z

P (Y = y | Z = z)P (Z = z)

We see that P (X = x | e) = αP (X = x, e) where α = 1/P (e) and does not depend on the value of x.
Thus, to find the probability distribution of P (X|e), it suffices to normalize the vector for P (X, e).

X and Y are conditionally independent given Z if

P (X,Y | Z) = P (X | Z)P (Y | Z).

Using absolute or conditional independence, we can decompose a large joint distribution into smaller
distributions.
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The naive Bayes model is a model where a single cause directly influences a number of effects, all of
which are conditionally independent given the cause. Its joint distribution can be written

P (Cause,Effect1, . . . , Effectn) = P (Cause)
∏
i

P (Effecti | Cause).

3.1 Bayesian networks

A Bayesian network is a directed graph. Each node corresponds to a random variable. If there is an
arrow from node X to node Y , X is said to be a parent of Y . The graph has no directed cycles. Each node
Xi contains the conditional probability distribution P (Xi | Parents(Xi)).

The Bayes net represents a joint distribution as follows:

P (x1, . . . , xn) =

n∏
i=1

P (xi | parents(Xi)).

The chain rule is

P (x1, . . . , xn) = P (xn | xn−1, . . . , x1)P (xn−1 | xn−2, . . . , x1) · · ·P (x2 | x1)P (x1) =

n∏
i=1

P (xi | xi−1, . . . , x1).

We see that the specification of the joint distribution is equivalent to the assertion that

P (Xi | Xi−1, . . . , X1) = P (Xi | Parents(Xi)) (1)

provided that Parents(Xi) ⊆ {Xi−1, . . . , X1}. Thus, we require that each node is conditionally independent
of its other predecessors in the node ordering, given its parents. The following construction satisfies this
condition.

1. Determine the set of variables, and order them. Some orderings will be better than others.

2. For i = 1, . . . , n, do the following

• Choose from X1, . . . , Xi−1 a minimal set of parents for Xi, such that Equation (1) is satisfied.

• Insert a link from each parent to Xi.

• Write the conditional probability table P (Xi | Parents(Xi)).

A variable is conditionally independent of its non-descendants, given its parents. It is also conditionally
independent of all other nodes in the network, given its parents, children, and children’s parents (its Markov
blanket).

• A path between two nodes X and Y is blocked given a set of evidence nodes {Zi}

– if the path goes through a collider node (the path contains a pair of arrows that collide head to
head) and neither the collider nor any of its descendants are evidence nodes, or

– if the path contains an evidence node that is not a collider.

• X and Y are said to be d-separated by evidence nodes {Zi} if there exists no unblocked path from
X to Y . If X and Y are d-separated by {Zi}, they are conditionally independent given {Zi}.
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3.2 Exact inference in Bayesian networks

A basic task is to calculate some conditional probability.
Inference by enumeration: product rule, marginalize, normalize

P (x | e1, . . . , ek) = αP (x, e1, . . . , ek)

= α
∑
y1

∑
y2

· · ·
∑
y`

P (x, e1, . . . , ek, y1, . . . , y`)

= α
∑
y1

∑
y2

· · ·
∑
y`

∏
P (Xi | Parents(Xi))

An improvement is variable elimination, which avoids redundant computation by storing some calcu-
lations.

If the Bayes net is a polytree (there is at most one undirected path between any two nodes in the
network), then the time and space complexity of exact inference is linear in the size of the network. Otherwise,
variable elimination can have exponential time and space complexity.

3.3 Approximate inference in Bayesian networks

A simple direct sampling algorithm (for absolute probability, not conditional) generates samples from the
joint distribution specified by the network. In topological order, sample values for each variable according
to the conditional probabilities of the network to arrive at a sample of all the variables. Repeat to estimate
the query absolute probability.

If there are evidence variables, one method is to simply throw away any samples that do not match
the evidence. This is rejection sampling. The drawback is that many samples will be thrown away. In
likelihood sampling, we sample only the nonevidence variables, so that our samples will be consistent with
the evidence. However, we weight the samples according to the probability that the evidence would occur.

The weight of a sample is calculated as follows:

• w is initialized to 1

• In topological order, for each Xi, do

– If Xi is an evidence variable with value xi, then w ← wP (Xi = xi | Parents(Xi)).

– Otherwise, sample a value for Xi from P (Xi | Parents(Xi)).

Algorithm 3 Likelihood weighting

function Likelihood-Weighting(X,~e, bn,N)
for j = 1, . . . , N do

~x,w ←Weighted-Sample(bn,~e)
~W [x]← ~W [x] + w where x is the value of X in ~x

return Normalize( ~W )

function Weighted-Sample(bn,~e)
w ← 1
~x← an event with n elements initialized from ~e
for all doXi ∈ {X1, . . . , Xn}

if Xi is an evidence variable with value xi in ~e then
w ← wP (Xi = xi | Parents(Xi))

else~x[i]← a random sample from P (Xi | Parents(Xi))

return ~x,w

Markov chain Monte Carlo algorithms generate each sample by making a random change to the
preceding sample. We discuss a particular form called Gibbs sampling. It begins at an arbitrary state
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that agrees with the evidence variables, and generates a next state by randomly sampling a value for a
nonevidence variable Xi. This sampling is conditioned on the current values of the variables in the Markov
blanket (parents, children, and children’s parents) of Xi.

Let q(~x→ ~x′) be the transition probability. This is a Markov chain on the state space. Defining πt(~x)
to be the probability that the system is in state x at time t, we have

πt+1(~x′) =
∑
~x

πt(~x)q(~x→ ~x′).

We say that the chain has reached is stationary distribution if πt = πt+1, and denote the distribution by
π. Then

π(~x′) =
∑
~x

π(~x)q(~x→ ~x′)

for all ~x′ If the transition probability distribution q is ergodic (every state is reachable from each other,
and there are no strictly periodic cycles), then there is exactly one distribution π satisfying this equation for
any given q.

We say that q is in detailed balance with π(~x) if

π(~x)q(~x→ ~x′) = π(~x′)q(~x′ → ~x)

for all ~x, ~x′.
Detailed balance implies stationarity:∑

~x

π(~x)q(~x→ ~x′) = π(~x′)
∑
~x

q(~x′ → ~x) = π(~x′).

We now show that Gibbs sampling satisfies detailed balance. Defining ~Xi
c

to be all variables excluding
Xi, we have

qi(~x→ ~x′) = qi((xi, ~xi
c)→ (xi, ~xi

c)) = P (x′i | ~xi
c, ~e)

which implies

π(~x)qi(~x→ ~x′) = P (~x | ~e)P (x′i | ~xi
c, ~e)

= P (xi, ~xi
c | ~e)P (x′i | ~xi

c, ~e)

= P (xi | ~xic, ~e)P (~xi
c | ~e)P (x′i | ~xi

c, ~e)

= P (xi | ~xic, ~e)P (x′i, ~xi
c | ~e)

= π(~x′)qi(~x
′ → ~x)).

The middle steps done by performing the chain rule forward and backward.
We only have left to show how the sampling occurs. Using the fact that a variable is conditionally

independent of all other variables given its Markov blanket, we have

P (x′i | ~xi
c, ~e) = P (x′i | mb(Xi)) = αP (x′i | Parents(Xi))

∏
Yj∈Children(Xi)

P (yj | parents(Yj)).

4 Uncertainty over time

Given a temporal random variable Xt, the Markov assumption is the condition that Xt depends only
on a finite fixed number of previous states. In a first-order Markov chain, we have

P (Xt | X0:t−1) = P (Xt | Xt−1).

We assume that the process is stationary, that P (Xt | Xt−1) is the same for all t. We also have the
sensor Markov assumption:

P (Et | X0:t, E0:t−1) = P (Et | Xt).
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Given an initial distribution P (X0), along with the transition and sensor models, we have a specification
of the complete joint distribution over all the variables.

P (X0:t, E1:t) = P (X0) =

t∏
i=1

P (Xi | Xi−1)P (Ei | Xi).

4.1 Inference in temporal models

We explore the following tasks:

• Filtering: computing the distribution over the most recent state (the belief state) given all evidence
so far.

• Prediction: computing the distribution over a future state, given all evidence to so far.

• Smoothing: computing the distribution over a past state, given all evidence up to the present.

• Most likely explanation: given a sequence of observations, computing the sequence of states most
likely to have generated those observations.

• Learning: learning the transition and sensor models from observations.

4.1.1 Filtering, prediction, and likelihood

P (Xt+1 | e1:t+1) = αP (et+1 | Xt+1, e1:t)P (Xt+1 | e1:t) (Bayes’s rule)

= αP (et+1 | Xt+1)P (Xt+1 | e1:t)

= αP (et+1 | Xt+1)
∑
xt

P (Xt+1 | xt, e1:t)P (xt | e1:t)

= αP (et+1 | Xt+1)
∑
xt

P (Xt+1 | xt)P (xt | e1:t)

We see that the filtering probability can be calculated recursively by propagating a forward message
f1:k := P (Xk | e1:k) using the above relationship, rewritten as

f1:t+1 = αForward(f1:t, et+1),

initialized with f1:0 := P (X0). The time and space for each update are both constant in t (but do depend
on the size of the state space).

Prediction is very similar. The one step update is

P (Xt+k+1 | e1:t) =
∑
xt+k

P (Xt+k+1 | xt+k)P (xt+k | e1:t).

We can also calculate the likelihood of the evidence sequence using a similar equation.

P (Xt, e1:t) = P (et | Xt)
∑
xt−1

P (Xt | xt−1)P (xt−1 | e1:t−1)

Defining `1:t(Xt) = P (Xt, e1:t), we have the relationship

`1:t+1 := Forward(`1:t, et+1),

and can calculate the likelihood by

P (e1:t) =
∑
xt

P (xt, e1:t) =
∑
xt

`1:t(xt).
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4.1.2 Smoothing

P (Xk | e1:t) = P (Xk | e1:k, ek+1:t)

= αP (Xk | e1:k)P (ek+1:t | Xk, e1:k)

= αP (Xk | e1:k)P (ek+1:t | Xk)

= αf1:k × bk+1:t

where × represents pointwise multiplication of vectors, and where the backward message is defined as
bk+1:t := P (ek+1:t | Xk).

P (ek+1:t | Xk) =
∑
Xk+1

P (ek+1:t | Xk, xk+1)P (xk+1 | Xk)

=
∑
xk+1

P (ek+1 | xk+1)(xk+1 | Xk)

=
∑
xk+1

P (ek+1, ek+2:t | xk+1)P (xk+1 | Xk)

=
∑
xk+1

P (ek+1 | xk+1)P (ek+2:t | xk+1)P (xk+1 | Xk)

which gives the relationship
bk+1:t = Backward(bk+2:t, ek+1).

Note that the backward message is initialized with bt+1:t = P (et+1:t | Xt) = P (| Xt) = ~1 where ~1 is a vector
of 1s.

Both the forward and backward recursions take a constant (w.r.t. t) amount of time per step, so the time
complexity of smoothing is O(t). If we want to smooth the whole sequence, we could run smoothing once
for each time step: O(t2). A more efficient method is to record the results of the forward filtering over the
whole sequence, and then compute the smoothed estimate while computing the backward messages from t
to 1. This is the forward-backward algorithm.

4.1.3 Most likely sequence

Faulty algorithm: compute distributions by smoothing at each time step, and taking the most likely
state. The problem is that these distributions are over single time steps, whereas we are considering the
most likely sequence, for which we need to consider joint probabilities over all time steps.

The intuition for the correct algorithm (the Viterbi algorithm) is to find a recursive relationship
between most likely paths to xt+1 and most likely paths to xt.

First, note that
max
x0:t+1

P (x0:t+1e1:t+1) = max
xt+1

max
x0:t−1

P (x0:t, e1:t).

The inner maximum can be calculated recursively.

max
x0:t

P (x0:t+1 | e1:t+1) = αmax
x0:t

P (et+1 | xt+1)P (xt+1 | xt)P (x0:t, e1:t)

= αmax
xt

[
P (et+1 | xt+1)P (xt+1 | xt) max

x0:t−1

P (x0:t, e1:t)

]
with the base case maxx0:−1 P (x0:0 | e1:0) := P (x0).

The relationship is very similar to the forward propagation function.
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4.2 Hidden Markov Models

In the particular case when the state of a process is a single discrete random variable, we call the process
a hidden Markov model we may represent transition probabilities as matrices and apply some small
improvements.

One application is robot localization: the observations are the robot’s observations, and the hidden state
is its actual location.

4.3 Kalman filters

Gaussian distribution:

p(x) = N (µ, σ2)(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
Multivariate Gaussian distribution:

p(~x) = N (~µ,Σ)(x) =
1√

(2π)k det Σ
exp

(
1

2
(~x− ~µ)TΣ−1(~x− ~µ)

)
Consider a temporal variable (Xt, Yt, Zt) ∈ R3. We use linear Gaussian distributions: the next state

is a linear function of the current state, plus some Gaussian noise. Considering the x-coordinate Xt, with a
time interval ∆, and assuming constant velocity, the update is Xt+∆ = Xt + X ′t∆. Adding Gaussian noise
gives a linear Gaussian transition model:

P (Xt+∆ = xt+∆ | Xt = xt, X
′
t = x′t) = N (xt + x′t∆, σ

2)(xt+∆).

The following is the Bayesian network associated with such a system.

Xt Xt+1

X ′t X ′t+1

Zt Zt+1

To generalize to multiple dimensions, we use the multivariate Gaussian distribution.
The Gaussian distribution has nice properties:

• If (X,Y ) is bivariate Gaussian, then X is Gaussian.

• If (X,Y ) is Gaussian, then X | Y is Gaussian.

• If X | Y is Gaussian and Y is Gaussian, then (X,Y ) is Gaussian.

• If X and Y are Gaussian, then aX + bY is Gaussian.

• If P (Xt | e1:t) is Gaussian, and the transition model P (Xt+1 | xt) is linear Gaussian, then the one-step
predicted distribution

P (Xt+1 | e1:t) =

∫
xt

P (Xt+1 | xt)P (xt | e1:t) dxt

is also Gaussian.
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• If the prediction P (Xt+1 | e1:t) is Gaussian and the sensor model P (et+1 | Xt+1) is linear Gaussian,
then after conditioning on the new evidence, the updated distribution

P (Xt+1 | e1:t+1) = αP (et+1 | Xt+1)P (Xt+1 | e1:t)

is also Gaussian.

4.4 Dynamic Bayesian networks

A dynamic Bayesian network is a Bayesian network that represents a temporal probability model
as we discussed in Section 4.1. Every HMM can be represented as a DBN with a single state variable
and a single evidence variable. Moreover, every discrete-variable DBN can be represented as an HMM by
combining all the state variables into a single state variable whose values are all possible tuples of values of
the original individual state variables. The advantage of retaining the DBN structure is to take advantage
of sparseness in the temporal probability model. For example, if a DBN has 20 boolean state variables, each
of which as 3 parents, then there are 20 × 23 probabilities, compared with the corresponding HMM which
has (220)2 probabilities.

We showed that a Kalman filter model can be represented in a DBN with continuous variables and linear
Gaussian conditional distributions, but not every DBN can be represented by a Kalman filter model because
DBNs can model arbitrary distributions, while state distributions in Kalman filters must be univariate
Gaussian.

4.4.1 Exact inference in DBNs

Since DBNs are Bayesian networks, we can simply unroll (construct the Bayes net) the DBN for as
many time slices as necessary, and then apply the inference algorithms for Bayes nets. However, the time
and space requirements per update would grow with O(t). It is smarter to use variable elimination to
achieve constant time and space per filtering update.

4.4.2 Approximate inference in DBNs

We could apply likelihood weighting to the unrolled DBN, but this would also suffer from increasing time
and space requirements per update because the algorithm runs through the entire network each time. A key
innovation is that we can use the samples themselves as an approximate representation of the current state
distribution.

Another problem with likelihood weighting is that the algorithm suffers if the evidence variables are
“downstream” from the variables being sampled, because the samples are generated without influence form
the evidence. In a DBN, none of the state variables have any evidence variables among its ancestors, so
although the weight of each sample will depend on the evidence, the actual set of samples generated will be
completely independent of the evidence, which makes for poor performance. The second key innovation is
to focus the set of samples on the high-probability regions of the state space, by throwing away samples of
very low weight, while replicating those with high weight.

These algorithms are called particle filtering. A population of N initial-state samples is created by
sampling from the prior distribution P (X0). Then for each time step, we perform the following.

1. Each sample is propagated forward by sampling the next state value xt+1 given the current value xt
for the sample, based on the transition model P (Xt+1 | xt).

2. Each sample is weighted by the likelihood it assigns to the new evidence P (et+1 | xt+1).

3. The population is resampled to generate a new population of N samples. Each new sample is selected
from the current population; the probability that a particular sample is slected is proportional to its
weight. The new samples are unweighted.
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5 Decisions under uncertainty

A Markov decision process is a sequential decision problem for a fully observable, stochastic environ-
ment with a Markovian transition model and additive rewards. The outcome of an action is nondeterministic.
A policy π specifies an action for every state. An optimal policy π∗ is one that yields the highest utility.

MDP Search HMM
states states states
actions actions no actions
rewards goal states —

Markov transitions Markov transitions Markov transitions
nondeterministic actions deterministic actions —

observable states observable states unobservable states

For an infinite time limit, an optimal policy is stationary: there is no reason to behave differently in the
same state at different times. Similarly, an agent’s preferences between state sequences are also stationary:
[s0, s1, s2, . . .] ≤ [s0, s

′
1, s
′
2, . . .] ⇐⇒ [s1, s2, . . .] ≤ [s′1, s

′
2, . . .].

We define the utility of a state sequence using discounted rewards, where the discount γ is between
0 and 1, by

U([s0, s1, . . .]) := R(s0) + γR(s1) + γ2R(s2) + · · · =
∞∑
t=0

γtR(st).

The discount factor is a measure of how much consideration is given to future rewards. With γ < 1 and a
bounded reward function, the utility of infinite sequences is finite, which avoids the problem of comparing
infinite utilities when γ = 1.

The expected utility of executing policy π at state s is

Uπ(s) = E

[ ∞∑
t=0

γtR(St)

∣∣∣∣∣π, S0 = s

]

where S1, S2, . . . are the random variables for the states reached by executing the policy.
We define π∗s := argmaxπ U

π(s), the optimal policy when s is the starting state. A consequence of using
discounted utilities with infinite horizons is that the optimal policy is independent of the starting state. The
intuition is that if π∗a and π∗b both reach c, there’s no reason for them to disagree on where to go next. Thus,
we may simply write π∗. We write U∗ := Uπ

∗
to denote the expected sum of discounted rewards when

executing an optimal policy.
With knowledge of U∗, we can recover π∗. The optimal policy is to choose the action that maximizes

the expected utility of the subsequent state:

π∗(s) = argmaxa∈A(s)

∑
s′

P (s′ | s, a)U∗(s′)

Conversely, if π∗ is known, we can find U∗ from the definition:

U∗(s) = E

[ ∞∑
t=0

γtR(St)

∣∣∣∣∣π∗, S0 = s

]

Theorem 5.1 (Bellman equations). If U∗ is an optimal policy, then

U∗(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′ | s, a)U∗(s′)

for all s.

18



Proof.

U∗(s) = E

[ ∞∑
t=0

γtR(St)

∣∣∣∣∣π∗, S0 = s

]

= R(s) + E

[ ∞∑
t=1

γtR(St)

∣∣∣∣∣π∗, S0 = s

]

= R(s) + γE

[ ∞∑
t=0

γtR(St+1)

∣∣∣∣∣π∗, S0 = s

]

= R(s) + γE

[
E

[ ∞∑
t=0

γtR(St+1)

∣∣∣∣∣π∗, S0 = s, S1 = s′

]∣∣∣∣∣π∗, S0 = s

]

= R(s) + γ +
∑
s′

P (s′ | s, π∗(s))E

[ ∞∑
t=0

γtR(St+1)

∣∣∣∣∣π∗, S0 = s, S1 = s′

]
= R(s) + γ +

∑
s′

P (s′ | s, π∗(s))U∗(s′)

= R(s) + γ max
a∈A(s)

∑
s′

P (s′ | s, a)U∗(s′).

5.1 Value iteration

The value iteration algorithm begins with arbitrary initial values for the utilities, and performs the
Bellman update:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P (s′ | s, a)Ui(s
′).

This is iterated until ||Ui+1−Ui||∞ := maxs∈S |Ui+1(s)−Ui(s)| < 1−γ
γ ε, which guarantees that ||Ui+1−U∗|| <

ε.

5.2 Proving correctness

The Bellman update B is a contraction. More precisely,

||BU −BV ||∞ < γ||U − V ||∞

for γ < 1 and any U, V . It is clear that a contraction has a unique fixed point, and that the function moves
the argument closer to the fixed point (since BU∗ = U∗), so repeated applications of a contraction always
reach the fixed point in the limit.

Assuming this is true, we can clearly see that the error in Ui is reduced by a factor of γ at each iteration:

||BUi − U∗||∞ ≤ γ||Ui − U
∗||∞.

Since the utilities are bounded by Rmax/(1− γ), implying that the maximum initial error is ||U0 −U∗||∞ ≤
2Rmax/(1− γ), we have that the error at the Nth iteration is γN2Rmax/(1− γ). If we want this to be less
than ε, we can choose N sufficiently large.

Moreover, if ||Ui+1 − Ui||∞ < 1−γ
γ ε, then ||Ui+1 − U∗||∞ < ε:

19



1− γ
γ

ε > ||Ui+1 − Ui||∞

≥ |||Ui+1 − U∗||∞ − ||Ui − U
∗||∞|

= ||Ui − U∗||∞ − ||Ui+1 − U∗||∞

≥ 1

γ
||Ui+1 − U∗||∞ − ||Ui+1 − U∗||∞

=
1− γ
γ
||Ui+1 − U∗||∞

What we are really concerned with is the performance of the policy based on one-step look-ahead using
by Ui. The policy loss ||Uπi − U∗|| is the most the agent can lose by executing πi instead of π∗. It turns
out that if ||Ui − U∗||∞ < ε, then ||Uπi − U∗||∞ < 2ε γ

1−γ . (See homework W5.)

5.3 Policy iteration

The policy iteration algorithm alternates between the following two steps, starting at some initial
policy π0.

• Policy evaluation: given a policy πi, calculate Ui := Uπi .

• Policy improvement: calculate a new policy πi+1 using one-step look-ahead based on Ui:

πi+1(s)← argmaxa∈A(s)

∑
s′

P (s′ | s, a)Ui(s
′)

The algorithm terminates when the utilities stop changing.
To do policy evaluation, the actions are fixed by the policy, so we need only solve the system of simplified

Bellman equations:

Ui(s) = R(s) + γ
∑
s′

P (s′ | s, πi(s))Ui(s′).

Solving the system is now possible because it is linear, due to the absence of the max operator.
Instead of calculating the utilities exactly, performing a few steps of simplified value iteration to get an

estimate of the utilities works fairly well:

Ui+1(s)← R(s) + γ
∑
s′

P (s′ | s, πi(s))Ui(s′)

This is modified policy iteration.
In asynchronous policy iteration, we only update the policy for a subset of states at each iteration.

This is useful in focusing locally, if we are unlikely to visit certain parts of the state space.

5.4 Partially observable MDPs

In a POMDP, the environment is only partially observable: the agent does not know what state it is in.
We consider the belief state b, a probability distribution over all possible states the agent may be in. To
calculate its current belief state as the conditional probability distribution over the actual states given the
sequence of percepts and actions so far, we perform filtering:

b′(s′) = αP (e | s′)
∑
s

P (s′ | s, a)b(s)

which can be written analogously as b′ = Forward(b, a, e).
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The probability of perceiving e given that a was performed in belief state b is given by summing over all
the actual states s′ that the agent might reach

P (e | a, b) =
∑
s′

P (e | a, s′, b)P (s′ | a, b) =
∑
s′

P (e | s′)P (s′ | a, b) =
∑
s′

P (e | s′)
∑
s

P (s′ | s, a)b(s).

Then the probability of reaching b′ from b given action a is

P (b′ | b, a) = P (b′ | a, b) =
∑
e

P (b′ | e, a, b)P (e | a, b) =
∑
e

P (b′ | e, a, b)
∑
s′

P (e | s′)
∑
s

P (s′ | s, a)b(s)

where P (b′ | e, a, b) = 1b′=Forward(b,a,e).
We can also write the expected reward for the actual state the agent might be in as

ρ(b) =
∑
s

b(s)R(s).

Armed with P (b′ | b, a) and ρ(b) we can define an observable MDP. It turns out that the optimal policy
for this MDP is also an optimal policy for the original POMDP.

6 Learning

In unsupervised learning, the agent learns patterns in the input without feedback. For example,
clustering detects potentially useful clusters of input examples. In reinforcement learning, the agent
learns from rewards or punishments. In supervised learning (learning by example), the agent observes
some example input-output pairs and learns a function.

6.1 Supervised learning

Given a training set of input-output pairs, we want to find a function h that approximates the unknown
function f that generated the set. When the output y is on a finite set of values, the learning problem is
called classification (the output will sometimes be referred to as a label). If it is a number, the problem
is regression.

We approximate f with a function h chosen from a hypothesis space H. A consistent hypothesis
agrees with the training set. A learning problem is realizable if f ∈ H.

Supervised learning can choose the hypothesis h∗ := argmaxh∈H P (h | data) that is most likely given the
data. But by Bayes’s rule,

h∗ = argmaxh∈H P (data | h)P (h).

P (h) is low if H is too large; in this way, we discourage complex hypotheses by giving them a low probability.
There is a tradeoff between complex hypotheses that fit the training data well and simpler hypotheses

that generalize better. Moreover, there is a tradeoff between the expressiveness of a hypothesis space and
the complexity of finding a good hypothesis within that space.

6.2 The theory of learning

Any hypothesis that is seriously wrong will be ousted with high probability after a certain small number
of examples because it will make an incorrect prediction. Any hypothesis that is consistent with a sufficiently
large number of training examples is probably approximately correct (PAC).

We assume that future examples are drawn independently from the same fixed distribution as past
examples. Moreover, we assume that f is deterministic and in H.

The training error and generalization error are, respectively,

errorT (h) :=
1

n

n∑
i=1

1h(x(i))6=f(x(i))

errorG(h) := E
[
1h(x)6=f(x)

]
A hypothesis is called approximately correct if errorG(h) ≤ ε; it is “close” to the true function f .
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Theorem 6.1. If h is consistent on N examples, then with probability ≥ 1− δ,

errorG(hA) ≤ 1

N
(ln|H|+ ln(1/δ)).

Proof. Choosing some small ε, we can define Hbad := {h ∈ H : errorG(h) ≥ ε}. We calculate the probability
that a bad hypothesis hb ∈ Hbad is consistent with the N examples. Since errorG(hb) ≥ ε, we know
P (hb(x) = f(x)) ≤ 1− ε. By the independence assumption, the probability that hb agrees on N examples is
bounded by (1− ε)N . Noting that Hbad ⊆ H, we have

P (Hbad contains a consistent hypothesis) ≤ |Hbad|(1− ε)N ≤ |H|(1− ε)N .

Because we would like |H|(1− ε)N ≤ δ, we have

ε ≥ 1

N
(ln(1/δ) + ln|H|)

where we use the fact that 1− ε ≤ e−ε (for all x ∈ R, ex − x− 1 ≥ 0). Thus for any ε satisfying the above
inequality, we have that the probability that Hbad contains a consistent hypothesis is ≤ δ. The most useful
one is ε = 1

N (ln(1/δ) + ln|H|), which proves the theorem.

For inconsistent hypotheses, we have the following theorem.

Theorem 6.2. If h is a hypothesis learned on a training set of N examples, then with probability ≥ 1− δ,

errorG(h) ≤ errorT (h) +

√
1

N

(
ln|H| ln 2N

ln|H|
+ ln(1/δ)

)
For infinite hypothesis spaces (where V C(H) is the dimension of H),

Theorem 6.3. If h is a hypothesis learned on a training set of N examples, then with probability ≥ 1− δ,

errorG(h) ≤ errorT (h) +

√
1

N

(
V C(H) ln

2N

V C(H)
+ ln(4/δ)

)
V C(H) represents the largest number of points that a classifier can classify perfectly, for any assignment

of labels to the points. For example, a linear separator in a two-dimensional space has V C(H) = 3; more
generally, a n-dimensional hyperplane has V C(H) = n+ 1.

6.3 Decision trees

A decision tree takes in a vector of inputs and outputs a label by performing a sequence of tests (a
path from root to leaf).

The decision tree algorithm is recursive.

• If the remaining examples are all positive or all negative, then we make the current node a leaf and
assign the appropriate label.

• If there are some positive and some negative examples, then choose the best attribute to split them.

• If there are no examples left, we return a value calculated from the plurality of all the examples used
in the node’s parent.

• If there are no attributes left, but both positive and negative examples, then some examples have
the same description but different classifications. The best we can do is return the plurality of the
remaining examples.
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Algorithm 4 Decision Tree algorithm

function Decision-Tree(examples, attributes, parentExamples)
if examples is empty then

return Plurality-Value(parentExamples)
else if all examples have the same classification then

return the label
else if attributes is empty then

return Plurality-Value(examples)
else

A← argmaxa∈attributes Importance(a, examples)
tree← a new decision tree with root A
for all value vk of A do

exs← {e : e ∈ examples, e.A = vk}
subtree← Decision-Tree(exs, attributes−A, examples)
add a branch to tree with test A = vk and subtree subtree

return tree

To choose the best node, we introduce the notion of entropy. The entropy of a Boolean random variable
that is true with probability q is

B(q) = −q log2 q + (1− q) log2(1− q).

Note that B(0) = B(1) = 0 and that B reaches its maximum at B(0.5) = 1.
If an example set has p positive and n negative examples, then the entropy of the whole set is B(p/(p+n)).

The information gain (reduction of entropy) on a split that we seek to maximize is thus

B

(
p

p+ n

)
−

d∑
k=1

pk + nk
p+ n

B

(
pk

pk + nk

)
.

This method of splitting is flawed in that it tends to split on attributes with many values. Alternative
splitting rules that correct this flaw are gain ratio and GINI index.

For continuous attributes, we can sort by value, and then find the best threshold for a split.
Unfortunately, decision trees tend to overfit. One method of pruning is early stopping, which does not

split when it does not look worthwhile. However, it is hard to tell how good a split is without looking further
downward; some attributes work better together than alone. Another alternative is post-pruning, which
takes the full tree and prunes back by eliminating splits that do not seem to be statistically valid.

6.4 Linear classification

If ~x ∈ Rd, then a linear classifier would be something like

h(~x) = g(~w · ~x) = 1~w·~x≥θ = sign(~w · ~x− θ).

In this case, g is a threshold function. Note that we interpret the output to be in {0, 1}.
A perceptron takes in a vector ~x and uses such a function to output some y. In the simple perceptron

algorithm, we initialize ~w and θ to some values, and perform the following for each example (~x, y).

1. Calculate the estimate ŷ ← sign(~wt · ~x− θt).

2. Update weight ~w. If ŷ = y, don’t change. Otherwise, move the weight slightly to avoid making the
same mistake next time:

~wt+1 ← ~wt + α(y − ŷ)~x

for some learning rate α.
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3. Update threshold if ŷ 6= y.
θt+1 ← θt − α(y − ŷ)

Threshold functions are cumbersome because they are not differentiable. We choose to use the logistic
function g(z) = (1+e−z)−1 instead, which forms a soft boundary from 0 to 1. Note that g′(z) = g(z)(1−g(z)).

We seek to minimize the squared loss, summed over all examples:
∑N
j=1(yj − h(xj))

2. For this ,we do
gradient descent (the direction of steepest descent is ~w − α∇Loss(~w)). For a single example ~x, y), the
derivation is

∂

∂wi
Loss(~w) =

∂

∂wi
(y − h~w(~x))2

= 2(y − h~w(~x))
∂

∂wi
(y − h~w(~x))

= −2(y − h~x(~x))g′(~w · ~x)
∂

∂wi
~w · ~x

= −2(y − h~w(~x))g′(~w · ~x)xi

= −2(y − h~w(~x))h~w(~x)(1− h~w(~x))xi

Thus, the weight update for minimizing loss is

~w ← ~w + α(y − h~w(~x))h~w(~x)(1− h~w(~x))~x

We can express the “and,” “or,” and “not” functions using perceptrons, but not “xor” because it is not
linearly separable.

A neural network consists of a network of perceptrons feeding inputs and outputs to each other. There
is an input layer that receives the true inputs, and an output layer that gives the final outputs. We use the
back-propagation algorithm, which propagates the error from the output layer to the hidden layers when
updating the weights. The weight update is similar to the one above.

6.5 Support vector machines

Support vector machines construct a maximum margin separator which helps with generalization.
Using the kernel trick, they can embed the data into a higher dimensional space, which makes the linear
separator more powerful.

We assume y ∈ {−1, 1}.
The solution depends only on a small subset of the examples: the support vectors, which lie closest

to the separator. We want to find the separator that separates the examples correctly and has the largest
margin.

Letting δ := mini

∣∣∣ ~w·~x(i)+b√
~w·~w

∣∣∣ = mini
y(i)(~w·~x(i)+b)√

~w·~w
, we seek

argmax~w,b δ such that
y(i)(~w · ~x(i) + b)√

~w · ~w
≥ δ, ∀i.

After some manipulations, we may write the problem as

argmin~w,b
1

2
~w · ~w such that y(i)(~w · ~x(i) + b) ≥ 1,∀i.

Our hypothesis is
h(~x) = sign(~w · ~x+ b).

To allow some errors, we allow soft margin separation, which penalizes errors based on their distance
from the correct side.

argmin~w,b,ξi
1

2
~w · ~w + C

∑
i

ξi such that y(i)(~w · ~x(i) + b) ≥ 1− ξi, ξi ≥ 0,∀i.
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C controls the tradeoff between margin size and training error, while
∑
i ξi is an upper bound on the number

of training errors.
This turns out to be equivalent to a dual optimization problem:

argmaxα
∑
j

αj −
1

2

∑
j

∑
k

αjαky
(j)y(k)(~x(j) · ~x(k)) such that

n∑
j=1

y(j)αj = 0, 0 ≤ αj ≤ C,∀j

If {αj} is the solution to the dual problem, then ~w =
∑
j αjy

(j)~x(j) is the solution of the primal problem.
Then our hypothesis will be

h(~x) = sign

∑
j

αjy
(j)(~x · ~x(i)) + b

 .

An interesting property of the dual space is that ~x appears only as part of a dot product.
When examples are not linearly separable, we employ the kernel trick. We find a function Φ that maps

~x to a vector of feature values. For example, a feature space could be Φ(~x) = (x2
1, x

2
2,
√

2x1,
√

2x2,
√

2x1x2, 1),
in which case the kernel function would be K(~x, ~x′) := Φ(~x) ·Φ(~x′) = (~x · ~x′ + 1)2. In the dual optimization
problem, we simply replace ~x · ~x′ with K(~x, ~x′).

6.6 Ensemble models

In bootstrap aggregating (bagging), we take the original training set of size n, and sample n examples
from it with replacement to get a “new” training set. We train a base hypothesis on each of the bootstrap
samples and take the majority vote. Bagging works best on unstable learning algorithms, where small
changes in the training set result in large changes in the hypothesis. Neural networks, perceptrons, and
decision trees are unstable, while SVMs are stable (depend only on support vectors).

Boosting implements the notion of having hypotheses correct each other. It is primarily used with
weak hypotheses (learning hypotheses that do slightly better than random guessing). It uses a weighted
example set and shifts focus on examples that were misclassified. We define the weighted error, based on
weight distribution D, by

errorD(h) =
∑

i:h(x(i))6=y(i)
D(i).

We assume y ∈ {−1, 1}.

Algorithm 5 AdaBoost

function AdaBoost(S = {(~x(i), y(i))}i∈{1,...,n})
D1(i)← 1

n for all i
for t = 1, . . . , T do

ht ←Weak-Learner(S,Dt)
εt = errorDt(ht)
αt ← 1

2 ln 1−εt
εt

for i = 1, . . . , n do
Dt+1(i)← 1

Zt
Dt(i) exp(−αty(i)ht(x

(i)))

return H(~x) := sign(α1h1(~x) + · · ·+ αThT (~x))

The edge of ht is γt := 1
2 − εt > 0.

Theorem 6.4. If H is returned by AdaBoost on training set S, then the training error of H decreases
exponentially with the number of rounds:

errorS(H) ≤ exp

(
−2

T∑
t=1

γ2
t

)
.
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Proof intuition. If ~x(i) is misclassified by H, then it is misclassified by the weighted majority of the hts. The
weight of ~x(i) must have increased many times, so DT (i) must be large. But since

∑
j DT (j) = 1, there

cannot be too many examples with large weight, i.e., there are few mistakes.

Boosting is often used with decision trees or decision stumps.

6.7 Unsupervised learning

In unsupervised learning there are no examples from which to learn.
Clustering attempts to partition the data into groups that make sense. A particular instance is hier-

archical agglomerative clustering, which begins with each example in its own cluster, and merges the
closest clusters iteratively until there is only one cluster.

There are several notions of distance between two clusters:

• Single link:
min

x(i)∈C1,x(j)∈C2

Dist(x(i), x(j))

• Average link:
1

|C1||C2|
∑

x(i)∈C1

∑
x(j)∈C2

Dist(x(i), x(j))

• Complete link:
max

x(i)∈C1,x(j)∈C2

Dist(x(i), x(j))

The Dist function can be Euclidean distance, Manhattan distance, etc.
After performing the iterations, we have a dendrogram that shows the order of the merges of the

clusters. One must make a decision as to where to cut the dendrogram to obtain a partition.
In K-means clustering, we look for K good cluster centers so that we may assign examples to be in

the cluster with the closest center. The algorithm begins with random centers, and then alternates between
calculating the clusters with those centers, recalculating the centers of these clusters, and repeating until the
clusters do not change anymore. Letting ck be the center of cluster Ck, we would like to to minimize

min
Ck,ck

∑
k

∑
x(i)∈Ck

||x(i) − ck||22.

The algorithm is guaranteed to converge/stop, but it may converge to a local minimum. Some improvements
include choosing good initial cluster centers (heuristic: choose initial centers to be far away from each other),
and multiple restarts.

6.8 Learning in Bayesian networks

Suppose we have the structure of a Bayes net, for which we do not know the true parameters (probabilities)
θ. We can try to learn them by generating a dataset of examples/samples from the Bayes net, and estimating
the parameters. We use the notion of maximum likelihood

The probability of seeing the dataset given the true parameters is

P (Data | θ) = P (x(1), . . . , x(n) | θ) =

n∏
i=1

P (x(i) | θ)

where the last term can be further decomposed using the Bayes net structure. We are looking for the
parameters that maximize the likelihood of seeing the dataset.

θML := argmaxθ P (Data | θ)
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For general Bayes nets, the estimated probability is

P̂ML(Xi = x | Parents(Xi) = (xj , . . . , xk)) =
#{examples : Xi = x, Parents(Xi) = (xj , . . . , xk)}

#{examples : Parents(Xi) = (xj , . . . , xk)}

What if some of the variables were hidden or latent? If we knew θ, we could calculate the conditional
probabilities and fill in the table.

The hard EM (expectation-maximization) algorithm begins with a random θ, fills in the dataset
by calculating the conditional probabilities and sampling from them, and then re-estimates θ from the new
dataset. K-means clustering is an example of a hard EM algorithm. “Hard” here means that when we
sample, we choose a single value for each variable. In contrast, the soft EM algorithm does not sample
and make a choice, but instead updates θ using the probabilities. This mitigates a problem in hard EM,
where information (the conditional probability) is lost after sampling.

These algorithms maximize

E

[
n∏
i=1

P (x(i) | θ)

∣∣∣∣∣D, θ
]

6.9 Learning hidden Markov models

We have the transition probabilities Tss′ , the observation model Ose, and the initial probabilit πs. If the
states Xt were observable, we could just use the usual estimations via sampling. However, since they are
not observable, we must use EM. We can use smoothing to help calculate.

The Baum-Welch algorithm is an instance of EM.

• E step: calculate, for every s, s′, t, i,

P (Xt+1 = s′, Xt = s | ei1:T , T,O, π)

P (Xt = s | ei1:T , T,O, π)

• M step: update T , O π.

6.10 Reinforcement learning in MDPs

In reinforcement learning in MDPs, the agent learns how to act based on the rewards he receives.
In model-based reinforcement learning, we estimate P (s′ | s, a) and R(s), and apply MDP algorithms

to find the optimal policy. In model-free reinforcement learning, we learn how to act without explicit
estimation.

If we assume that actions are taken according to some policy π (passive reinforcement learning, then
we can measure the goodness of the policy.

Uπ(s) = E

[ ∞∑
t=0

γtR(St)

∣∣∣∣∣π, S0 = s

]

This is similar to policy iteration, but the probabilities and rewards are unknown.
In batch model-based learning, we estimate the transition probability as

P̂ (s′ | s, π(s))← transitions s→ s′

transitions from s

We can be a little smarter by updating the average instead of recalculating: incremental model-based
learning:

P̂ (s′ | st, π(st))←
1

N(st)
(P̂ (s′ | st, π(st))(N(st)− 1) + 1s′=st+1)

Using this estimated probability, we can estimate Û using policy evaluation.
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In model-free learning, we can estimate

Uπ(s) = R(s) + γ
∑
s′

P (s′ | s, π(s))Uπ(s′) = R(s) + γE[Uπ(s′) | s, π(s)] = E [R(s) + γUπ(s′)|s, π(s)]

using

1

N(s)

(∑
st=s

rt + γUπ(st+1)

)
The temporal difference learning update is incremental model-free learning:

Ûπ(st)←
1

N(st)

(
(N(st)− 1)Ûπ(st) + rt + γÛπ(st+1)

)
= Ûπ(st) +

1

N(st)
(rt + γÛπ(st+1)− Ûπ(st))︸ ︷︷ ︸

temporal difference

In both cases, Ûπ converges to the true Uπ. Convergence is faster in model-based learning, but time/space
requirements are much lower in the model-free approach. Model-based and model-free learning have time
complexity cubic and linear, respectively, in the number of states, and have time complexity cubic and
constant, respectively, in the number of states.

In active reinforcement learning the agent chooses his actions. In model-based learning, we can
estimate the transition probability in the same way as above, replacing π(s) with at. However, for model-
free learning, we are stuck because in the Bellman equation, the expectation is inside the max function.

U∗(s) = R(s) + γ max
a∈A(s)

∑
s′

P (s′ | s, a)U∗(s′) = R(s) + γ max
a∈A(s)

E[U∗(s′) | s, a]

We introduce the action-value function or quality function Q(s, a) which is the expected value of
executing a at state s:

Qπ(s, a) = E

[ ∞∑
t=0

γtR(St)

∣∣∣∣∣S0 = s,perform action a, then follow policy π

]
It satisfies

U∗(s) = max
a

Q∗(s, a).

It has a Bellman-like equation, but the expectation is outside the max, so we may apply the temporal
difference trick from before.

Q∗(s, a) = R(s) + γ
∑
s′

P (s′ | s, a) max
a′

Q∗(s′, a′) = E[R(s) + γmax
a′

Q∗(s′, a′) | s, a]

This is called Q-learning.

Q̂(st, at)← Q̂(st, at) +
1

N(st, at)
(rt + γmax

a′
Q̂(st+1, a

′)− Q̂(st, at))︸ ︷︷ ︸
temporal difference

How do we choose the action? If we choose at = argmaxa Q̂(st, a), it may not converge to the optimal
policy, and it might settle with an average policy, not exploring other states/actions. If we choose a random
action each time, it will converge to the optimal policy, but will waste a lot of time on bad actions, and can
reap a large negative reward. We need a tradeoff between exploration and exploitation: multi-armed bandit
problems.

We can exploit most of the time and explore once in a while, or we may assign higher utility to underex-
plored state/action pairs. If all state/action pairs are explored often enough, then Q-learning is guaranteed
to converge to the optimal policy.

So far, the algorithms ignore the the structure of the states. In function approximation, we describe
each state (or state/action pair) using a set of features, and then approximate U (or Q) using an evaluation
function of the features. A popular evaluation function are neural networks. This reduces the model and
makes learning faster. It also generalizes to unseen states, saving the need for explorations.
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