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The following are rough notes for a two-hour reading group discussion on Chapters 1-6 of [1]. Any errors are
mine.

1 The Chinese Restaurant Process

1.1 Definition
The Chinese Restaurant Process (CRP) is a sequence of distributions indexed by N . For a fixed α > 0 and

for each N , CRP(α,N) is a distribution over all partitions of the labeled set [N ] := {1, 2, . . . , N}. For example,
π[5] = {{1, 3}, {2}, {4, 5}} is a partition of [5]. The ordering of the subsets of the partition and the ordering of the
elements within each subset do not matter. We sometimes think of each subset of a partition as a table in a restaurant,
and customers 1, . . . , N arrive sequentially and sit down at tables. We will use the terms “subset of a partition,”
“cluster,” and “table” interchangeably.

The distribution is defined recursively. Given a partition π[n] (i.e., n people have already sat down), the destination
of the next person n+ 1 has the following distribution.

P (n+ 1 joins table c | π[n]) =
|c|

n+ α

P (n+ 1 starts a new table | π[n]) =
α

n+ α
.

That is, whenever a new person arrives at the restaurant, she starts a new table with probability proportional to α, or
joints an occupied table with probability proportional to the number of people already at that table. The process begins
with the first person starting her own table with probability 1, and then the new customers each join according the
above distribution conditioned on the previous customers.

For example, the probability of the partition {{1, 3}, {2}, {6, 4, 5}} under CRP(α, 6) is

α

α
· α

α+ 1
· 1

α+ 2
· α

α+ 3
· 1

α+ 4
· 2

α+ 5
.

In general, we see that the probability of a given partition π[N ] ∼ CRP(α,N) is

P (π[N ]) =
1

α(α+ 1) · · · (α+N − 1)

∏
c∈π[N]

α(|c| − 1)!

=
αK

α(α+ 1) · · · (α+N − 1)

∏
c∈π[N]

(|c| − 1)!,

where K represents the number of clusters c in π[N ]. From this equation we see that the CRP is exchangeable in the
sense that only the sizes of the clusters affect the probability, and not the labeling. In other words, the probability of
any final seating configuration of N people is the same, even if we had run the process with a different ordering of the
N customers.
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1.2 The CRP mixture model
As our terminology suggests, we can use the CRP to define a mixture model for clustering. The CRP mixture

model is defined as follows.

π[N ] ∼ CRP(α,N) (1)

(φc | π[N ])
i.i.d.∼ G0, c ∈ π[N ] (2)

(xi | φ, π[N ])
ind∼ F (φc) i ∈ c

In words, we first draw a partition π[N ] ∼ CRP(α,N). Then, for each cluster c ∈ π[N ] we draw a parameter φc i.i.d.
from some base distribution G0. Finally, if i is assigned to a cluster c according to π[N ], then xi is drawn from some
distribution F (φc) parameterized by the corresponding parameter φc.

For a concrete example, consider G0 = N(0, 1), and F (φc) = N(φc, 1). Then the cluster assignments are given
by π[N ] ∼ CRP(α,N), the cluster centers φ − c are drawn i.i.d. from N(0, 1), and the data xi, conditioned on i
belonging to cluster c, are drawn i.i.d. from a normal distribution centered at the cluster center φc.

As an example, consider π[6] = {{1, 3}, {2}, {6, 4, 5}}, and for convenience we label the three clusters a, b, c
respectively. Then we draw the cluster centers φa, φb, φc i.i.d. from N(0, 1). Then, x1 and x3 are drawn i.i.d. from
N(φa, 1), x2 is drawn from N(φb, 1), and x4, x5, x6 are drawn i.i.d. from N(φc, 1). [Picture omitted.]

At first glance, this model does not seem any different from a finite mixture model. However, the difference lies in
the behavior asN grows: here, the number of clusters (and hence cluster parameters φc) will grow withN , which does
not occur in a finite mixture model. This is the essence of the “nonparametric” aspect of “Bayesian nonparametrics.”

1.3 Gibbs sampling in the CRP mixture model
We give a few quick remarks about inference in the CRP mixture model. The main goal of clustering is to find the

posterior distribution of the cluster assignments

p(π[N ] | x) =
p(x | π[N ])p(π[N ])∑
π′
[N]
p(x | π[N ])p(π

′
[N ])

.

Computing this is intractable due to the sum in the denominator: the number of partitions (known as the Bell number)
grows as O(NN ).

The standard way to cope with this is through sampling approaches. In the interest of time, I will not go into the
details of Gibbs sampling for the CRP mixture model, but I will outline the structure so that we may compare it to the
Gibbs sampler via the Dirichlet process later.

If we denote the densities of G0 and F (φc) by g0 and f(· | φc), we have

p(π[N ] | x) ∝ p(π[N ], x)

=

∫
p(π[N ], φ, x) dφ

= p(π[N ])

∫ ∏
c∈π[N]

[
g0(φc)

∏
i∈c

f(xi | φc)

]
dφ

= p(π[N ])
∏

c∈π[N]

h(xc),

where

h(xc) :=

∫ [
g0(φc)

∏
i∈c

f(xi | φc)

]
dφc .

The integration over φ results in the integrals defining h(xc), which can be computed if g0 is the conjugate prior
for the likelihoods f(xi | φc), but otherwise the algorithm below cannot be used.

The Gibbs sampler performs a sort of “stochastic coordinate ascent” on the space of partitions. Given the previous
sample π[N ], a person i is removed from the partition, and then re-added to the partition according to the above
distribution p(π[N ] | x) to form a new sample π′[N ]. It turns out that the procedure for re-adding person i into the
partition is some “mixture” of the prior CRP process and the new likelihoods h. See [1, §3.3] for details.
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2 The Blackwell-MacQueen urn
The Blackwell-MacQueen (BM) urn is a generalization of the Pólya urn that essentially captures the first two

parts (1) and (2) of the CRP mixture model above.
Let (θ1, . . . , θN ) be the cluster parameters φc for each xi in the CRP mixture model. In our earlier example, we

would have (θ1, . . . , θ6) = (φa, φb, φa, φc, φc, φc). We can incorporate the CRP and the base measure G0 to describe
the distribution of θ succinctly using the recursion

(θn+1 | θ1, . . . , θn) ∼ α

α+ n
G0 +

1

α+ n

n∑
i=1

δθi .

Here, δθi is the Dirac delta measure and denotes a point mass at θi. [Note that the sum on the right-hand side can
be rewritten as

∑
c∈π[n]

|c|δφc by collecting terms.] We denote the distribution on (θ1, . . . , θN ) defined by the above
recursion as θ ∼ BM(α,G0, N).

Thus, the CRP mixture model can be rewritten as

θ ∼ BM(α,G0, N)

(xi | θi)
ind∼ F (θi) i = 1, . . . , N.

The BM urn is exchangeable! This follows by exchangeability of the elements in the CRP model combined
with the i.i.d. draws of φc from the base measure G0. Unlike the notion of exchangeability in the CRP, the notion
of exchangeability of the BM urn is compatible with de Finetti’s theorem, since exchangeability here refers to the
sequence (θ1, θ2, . . . , ). One could also think of the BM urn as a reformulation of the CRP into a sequence form
compatible with de Finetti’s theorem.

De Finetti’s theorem implies the existence of a random probability measure G such that for any N ,

P (θ1 ∈ A1, . . . , θN ∈ AN ) =

∫ [ N∏
n=1

G(An)

]
Q(dG) .

The statement of the theorem is sometimes rephrased as the θi being conditionally i.i.d. given G:

P (θ1 ∈ A1, . . . , θN ∈ AN | G) =

N∏
n=1

G(An).

We find this G in the next section.

3 The Dirichlet process

3.1 Definition
We seek the random measure G such that if θ ∼ BM(α,G0), then

(θi | G)
i.i.d.∼ G. (3)

Consider a measure of the form

G =

∞∑
k=1

wkδφk
. (4)

If the wk and φk are fixed and
∑∞
k=1 wk = 1, then this is a valid probability measure. However, if the wk and φk are

random, then G becomes a random probability measure.
It turns out the G satisfying (3) comes from the Dirichlet process DP(α,G0), where G takes the form (4) and

where

w ∼ GEM(α),

φk
i.i.d.∼ G0.
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It remains to define the Griffiths-Engen-McCloskey GEM(α) distribution.

βk
i.i.d.∼ Beta(1, α) k = 1, 2, . . .

wk := βk
∏
j<k

(1− βj).

As mentioned above, we must have
∑
k wk = 1, i.e., w can be viewed as a partition of the interval [0, 1] into

countably many pieces, just as the Dirichlet distribution can be thought of a partition of the interval into finitely
many pieces. Thus the GEM(α) distribution can be viewed as a “stick-breaking” procedure. The first break point
β1 ∼ Beta(1, α) is drawn, and we have w1 = β1. We then “break off” a piece of proportion β1 from our stick of
length 1, and keep the remaining piece of length 1−β1. We then draw β2 ∼ Beta(1, α), and break off a β2 proportion
of the remaining stick, which has length w2 = β2(1− β1).

When α is large, the βk tend to be close to zero, so the cluster sizes are very small, so the draws θi resemble draws
from G0. When α is very small, the cluster sizes are larger, and our draws θi tend to join existing clusters.

3.2 Intuition behind stick-breaking
Why should this construction be the random measure G guaranteed by de Finetti’s theorem for the BM urn?

The intuition for the above construction of G is that each wk represents the probability of being in a particular ta-
ble/cluster. Let us start with w1, the probability of being at the first table. Let Z1, . . . , ZN be indicators for the
customers 2, . . . , N + 1 sitting at the first table with customer 1. Then, letting Sn =

∑n
k=1 Zk, we have

P (Z1 = 1) =
1

α+ 1

P (Zn+1 = 1 | Z1, . . . , Zn) =
Sn

n+ α
.

In particular,

P (Z1 = z1, . . . , ZN = zN ) =
SN ! · α(α+ 1) · · · (α+N − s− 1)

(α+ 1)(α+ 2) · · · (α+N)
=

Γ(SN + 1)Γ(α+N − SN )Γ(α+ 1)

Γ(α+N + 1)Γ(α)

Note that the Zi are exchangeable. One can verify directly that the Zi have the same distribution as if they were
instead drawn according to the model (Zi | β1)

i.i.d.∼ Ber(β1) and β1 ∼ Beta(1, α), then it turns out that their joint
distribution is precisely the one above, so is the random measure guaranteed by de Finetti’s theorem in the Bernoulli
case. Thus w1 = β1 ∼ Beta(1, α). Another way to state this is that the limiting fraction β1 = limN→∞

SN

N of
customers going to the first table follows the Beta(1, α) distribution.

Having allocated probability w1 to the first table, we have 1 − w1 probability dedicated to other seatings. If we
perform the same analysis to compute the conditional probability that customers [after the first occupant of the second
table] sit at or not at the second table, given they are not at the first table, then we get the same result β2 ∼ Beta(1, α).
Multiplying by the probability of not being at the first table gives w2 = β2(1 − w1). [One can also note that if we
consider the Chinese restaurant process starting at the first occupant of the second table, and ignore the customers that
go to the first table, we just have another Chinese restaurant process.]

Generalizing, we have

wk = βk

1−
∑
j<k

wj

 = βk
∏
j<k

(1− βj).

In short, one should think of the wk as the limiting proportion wk = limN→∞
1
N

∑∞
i=1 1{θi=φk} of draws of the

Blackwell-MacQueen urn that are labeled/colored by φk (the kth cluster).
One might be a little suspicious about thinking of wk and φk as being associated with the kth cluster that appears,

since if we were to sample i.i.d. from G, we would not have any guarantee that φ1 is the first observation we see, and
φ2 is the second new observation, and so on. However, it turns out that both of these are equal in distribution. More
precisely, suppose w, φk, and DP(α,G0) are as defined above, and we observe (θ | G)

i.i.d.∼ G. If we let w̃k and φ̃k be
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the weight and value of the kth new atom we see in this sample θ, then

∞∑
k=1

wkδφk

d
=

∞∑
k=1

w̃kδφ̃k
.

See Corollaries 9 and 10 of [2] for more detail.

3.3 Gibbs sampling using stick-breaking
Consider the Dirichlet process mixture model.

G ∼ DP(α,G0)

(θi | G)
i.i.d.∼ G i = 1, . . . , N

(xi | θi)
ind∼ F (θi) i = 1, . . . , N.

We describe the Gibbs sampler before describing the advantages of this model over the CRP/BM mixture model.
One hurdle we encounter is sampling from G, which has countably many atoms. Here, we discuss a truncation

approach. There is also an exact approach that generates atoms “on the fly” as needed, and exploits the fact that only
finitely many atoms are needed in practice [1, §6.4].

In the truncation, we approximate the infinite sum using G =
∑Kmax

k=1 wkδφk
. We sample βk

i.i.d.∼ Beta(1, α) for
k− 1, . . . ,Kmax− 1 as before, but then set βKmax

= 1. The definition wk = βk
∏
j<k(1−βj) remains the same, and

we have
∑Kmax

k=1 wk = 1.
For the sampling algorithm it is convenient to include cluster assignment variables zi to indicate which cluster

k ∈ {1, . . . ,Kmax} contains xi. Then we can rewrite the model as

(zi | G)
i.i.d.∼ Cat(w1, . . . , wKmax) i = 1, . . . , N

(xi | zi = k,G)
ind∼ F (φk) i = 1, . . . , N

Note that the joint distribution decomposes as

p(x, z, β, φ) =

[
Kmax∏
k=1

g0(φk)

][
Kmax−1∏
k=1

p(βk)

][
N∏
i=1

p(zi | β)p(xi | zi, φ)

]
.

We perform Gibbs sampling over the state space {βk, φk}Kmax

k=1 and {zi}ni=1. At each iteration, we choose one of
these variables and re-sample it from its conditional distribution given all the other variables.

p(zi = k | x, z−i, β, φ) ∝ p(zi = k | β)p(xi | zi = k, φ)

= wif(xi | φk) i = 1, . . . , N

p(φk | x, z, β, φ−k) ∝ g0(φk)

N∏
i=1

p(xi | zi, φ)

∝ g0(φk)
∏
i:zi=k

f(xi | φk) k = 1, . . . ,Kmax

p(βk | x, z, β−k, φ) ∝ p(βk)

N∏
i=1

p(zi | β)

∝ (1− βk)α−1
∏
i:zi≥k

wzi

∝ βnk

k (1− βk)n>k+α−1. k = 1, . . . ,Kmax
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where nk =
∑n
i=1 1[zi = k] is the number of observations in cluster k, and n>k =

∑n
i=1 1[zi > k] is the number of

observations in clusters ` > k. The last step used the fact that wk ∝ βk and w` ∝ 1− βk for ` > k.
The conditional distribution for βk is simply Beta(nk + 1, n>k + α). The conditional of φk has a closed form if

G0 is conjugate to the likelihood, but if not, one can use an MCMC update like Metropolis Hastings.
The two main advantages for Gibbs sampling that we gain from using this model over the BM/CRP model are the

following.

1. There is no integral, which diminishes the need for conjugacy of G0 with the likelihood.

2. The decoupling (conditional indepedence) of the θi given G renders many parts of the sampling algorithm
parallelizable. Specifically, the cluster assignments z can be updated in parallel. Also, the updates to β and φ
can also be done in parallel.

3.4 The posterior Dirichlet process
In this section we state some results without proof. See §6.2 and appendices C and D of [1] for more detail.
Our Dirichlet process provides a discrete distribution over objects and take i.i.d. samples from this distribution.

Analogous to the beta-binomial and Dirichlet-multinomial conjugacy, we suspect the posterior distribution of the
Dirichlet process, after observe samples, is also a Dirichlet process. We will make this precise.

Suppose we have a partition (A1, . . . , AK) of Θ. The vector (δθi(A1), . . . , δθi(AK)) is an indicator vector for the
index k such that θi ∈ Ak, and this event (conditioned on G) has probability G(Ak). Thus, (conditioned on G) this
vector is a categorical/multinoulli random variable with parameters (G(A1), . . . , G(AK)).

((δθi(A1), . . . , δθi(AK)) | G) ∼ Cat(G(A1), . . . , G(AK)).

Moreover, the random parameters follow a Dirichlet distribution [1, Appendix C]:

(G(A1), . . . , G(AK)) ∼ Dir(αG0(A1), . . . , αG0(AK)), (5)

for any partition (A1, . . . , AK) of Θ. This is the primary reason for the name “Dirichlet process,” and in fact the latter
condition (5) is traditionally taken to be the definition of the Dirichlet process. The Dirichlet process borrows nice
consistency properties from the Dirichlet distribution, such as G(Θ) = 1 and the aggregation property

(G(A1), . . . , G(Ai) +G(Ai+1), . . . , G(AK))
d
= (G(A1), . . . , G(Ai ∪Ai+1), . . . , G(AK)).

Since the Dirichlet distribution is conjugate to the multinomial distribution, we have the posterior(
(G(A1), . . . , G(AK)) | {(δθi(A1), . . . , δθi(AK)}Ni=1

)
∼ Dir

(
αG0(A1) +

N∑
i=1

δθi(A1), . . . , αG0(AK) +

N∑
i=1

δθi(AK)

)

This result holds for any partition (A1, . . . , AK), so the posterior process is a Dirichlet process

(
G | {(δθi(A1), . . . , δθi(AK)}Ni=1

)
∼ DP

(
α+N,

α

α+N
G0 +

1

α+N

N∑
i=1

δθi

)
.

However, we want the posterior given θ1, . . . , θN , not given {(δθi(A1), . . . , δθi(AK)}Ni=1. A priori, θ could provide
more information about G than {(δθi(A1), . . . , δθi(AK)}Ni=1 since the latter information only gives information about
which subsetAk contains θi and not the precise location of θi. However, this is not the case: the conditional distribution
of G given θ is the same. This is known as the “tail-free” property of the Dirichlet process; see [1, Appendix D].

(G | θ1, . . . , θN ) ∼ DP

(
α+N,

α

α+N
G0 +

1

α+N

N∑
i=1

δθi

)
. (6)

A final side remark: One can also write this posterior as a mixture of the prior Dirichlet process and point masses
on the distinct points θ∗1 , . . . , θ

∗
K generated from G; see [1, §6.2].
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(G | θ) = w′G′ +

K∑
k=1

wkδθ∗k ,

where

(w1, . . . , wK , w
′) ∼ Dir(n1, . . . , nK , α)

(G′ | θ) ∼ DP(α,G0).

3.5 Back to the Blackwell-MacQueen urn and the Chinese Restaurant Process
Here we check that G is indeed the random measure we seek. If θ is generated according to (3) with G ∼

DP(α,G0), then

P (θN+1 ∈ A | θ1, . . . , θN )

= EG∼DP(α,G0)[P (θN+1 ∈ A | θ1, . . . , θN , G) | θ1, . . . , θN ] tower property
= EG∼DP(α,G0)[P (θN+1 ∈ A | G) | θ1, . . . , θN ] cond. indep. given G
= EG∼DP(α,G0)[G(A) | θ1, . . . , θN ] (θN+1 | G) ∼ G

=
α

α+N
G0(A) +

1

α+N

N∑
i=1

δθi(A). posterior D.P., see (6)
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