
STAT 151A: Interpretation of β̂j
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Let

X =

1 | |
... x1 · · · xp
1 | |


be our design matrix and assume X>X is invertible.

Let X̃ be matrix obtained by removing column x1 from X . Let H = X(X>X)−1X> be the projection onto
C(X), and let H̃ = X̃(X̃>X̃)−1X̃> be the projection onto C(X̃).

Let β̂ = (X>X)−1X>y be the least squares coefficients of regressing y onto X , and let ŷ = Hy = Xβ̂ be the
fitted values.

Similarly, ˜̂y := H̃y and x̂1 := H̃x1 are the result of regressing y and x1 respectively onto the columns of X̃ .

1 β̂1 as the slope coefficient of a simple regression of residuals on residuals

Your lecture notes (Section 1.3 “Interpretation of β̂” in “Multiple Regression II”) claim the following.

Proposition 1.1. β̂1 is the slope coefficient from a simple regression of the residuals y− ˜̂y onto the residuals x1 − x̂1.

[Note that this result can easily be modified to a statement about β̂j for some other j.]

Proof (optional). First note that HH̃ = H̃ because C(X̃) ⊆ C(X). Therefore C(HH̃) = C(H̃) = C(H̃) ∩ C(H), so (by HW1 Q3) we have

H̃H = HH̃ = H̃. (1)

Moreover, ˜̂y := H̃y

= H̃Hy using (1)

= H̃ŷ

= H̃(β̂0~1 + β̂1x1 + β̂2x2 + · · ·+ β̂pxp)

= β̂0~1 + β̂1H̃x1 + β̂2x2 + · · ·+ β̂pxp

= ŷ − β̂1x1 + β̂1H̃x1.

The second-to-last equality comes from distributing H̃ over the sum and noting that H̃~1 = ~1 and H̃xj = xj for all j 6= 1.
Therefore,

y − ˜̂y = (y − ŷ) + β̂1(x1 − x̂1)

A simple regression of y − ˜̂y onto x1 − x̂1 would project y − ˜̂y onto the span of ~1 and x1 − x̂1, which is a subspace of C(X) since
~1, x1, x̂1 ∈ C(X). Let ˜̃H denote the projection matrix onto this space. Since y − ŷ ∈ C(X)⊥, the fitted values from this simple regression can
be written as ˜̃

H(y − ˜̂y) = β̂1(x1 − x̂1) = 0 ·~1 + β̂1(x1 − x̂1).

Thus β̂1 is the slope coefficient in this simple regression.

Some of the ingredients of the proof lead directly to the variance result below.
It may be hard to grasp the intuition behind this result. Drawing a geometric picture of projecting y onto some

subspace C(X) and a smaller subspace C(X̃) may be helpful.
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Alternatively, an extremely hand-wavy explanation is as follows. The residuals y − ˜̂y represents the remaining
“information” in the response variable y that was not explained by variables x2, . . . , xp. Similarly, the residuals x1−x̂1
represents the remaining “information” in the explanatory variable x1 that was not explained by the other variables
x2, . . . , xp. Then β̂1 is related to how much of the “remaining information in y” is explained by the “remaining
information in x1,” via a simple regression. Again, this is completely non-rigorous.

2 The variance of β̂1
The same lecture notes (and page 113 of the textbook) also claim the following.

Proposition 2.1.

Var(β̂1) =
σ2∑n

i=1(xi1 − x̂i1)2
=

1

1−R2
1

· σ2∑n
i=1(xi1 − x1)2

[Again, this is easily modified to get an expression for the variance of β̂j for some other j.]

Proof (optional). To prove the first equality, we use the fact that β̂1(x1 − x̂1) = ŷ − ˜̂y (see previous proof). Recall (from lecture notes or Lab 3)
also that (I −H)y = (I −H)ε and (I − H̃)y = (I − H̃)ε, which together imply (H − H̃)y = (H − H̃)ε.

Var(β̂1)‖x1 − x̂1‖2 = Var
[
(β̂1(x1 − x̂1))>(β̂1(x1 − x̂1))

]
= Var[(ŷ − ˜̂y)>(ŷ − ˜̂y)]
= Var[y>(H − H̃)>(H − H̃)y]

= Var[ε>(H − H̃)>(H − H̃)ε]

= Var[ε>(H − H̃)ε]

= σ2 tr(H − H̃) see lecture notes or Lab 3

= σ2 tr(H − H̃) = tr(H)− tr(H̃) = (p+ 1)− p

To prove the second equality, it suffices to check the denominators are equal, i.e.

(1−R2
1)‖x1 − x1‖2 = ‖x1 − x̂1‖2.

This follows immediately from
(
1− RegSS

TSS

)
TSS = RSS, where all the SS quantities are for the regression of x1 onto the columns of X̃ .

See your lecture notes and page 113 of the textbook for how to interpret this result. Recall that σ2∑n
i=1(xi1−x1)2

is the variance of the slope coefficient in simple regression of y onto x1. The above result shows that when you do
multiple regression with x1 along with other variables, then the corresponding slope coefficient β̂1 for x1 is the same,
but multiplied by the variance inflation factor 1

1−R2
1

, which is large if x1 is very correlated with the other variables.

Note that the other formula Var(β̂1) = σ2(X>X)−11,1 is therefore equal to the above. The reason why we used
this formula more often is because it does not involve this extra regression (of x1 onto the other variables). But the
formulas in the proposition are useful for interpretation, as noted in the previous paragraph.
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