
STAT 151A: Lab 10
Review for Midterm 2

Billy Fang

3 November 2017

Feedback form is at the same place: https://goo.gl/forms/fKjLeKItix2Djg5l2. Please leave comments
and suggestions for lab, office hours, etc.

1 One-way ANOVA
Relevant reading: lecture notes, Lab 5 notes, Fox 8.1.

1.1 Setting up the model
The purpose of this section is to very slowly clarify the various notations used in this topic. If you are comfortable
with this, you can skip to the next subsection.

Example dataset. Each weekday that you wait for the bus, you keep track of how many minutes later than schedule
it arrives. (Negative values correspond to cases where the bus arrives earlier than scheduled.) Some days you don’t
ride the bus, so you don’t have data for every day. You also ride the bus at most once per day.

Minutes late Day of the week
1 M
−1.5 T
3 Th
−2 W
10 F
...

...
12 Th
−1 T

Assumptions. In one-way ANOVA we assume the following.

• Each data point is independent of the others.

• The number of minutes late on a Monday follows the N(µ∗M, σ
2) distribution where µ∗M is some number repre-

senting the true mean number of minutes late on Mondays. Similarly, we assume the number of minutes late on
Tuesday follows the N(µT, σ

2) distribution, and so on.

An important assumption is that σ2 is the same across all data points (and thus the same across all the groups).

Writing the model in y = Xβ∗ + ε form. We can write this model as1

yi = µ∗MI(Dayi = M) + µ∗TI(Dayi = T) + · · ·+ µ∗FI(Dayi = F) + εi, εi
i.i.d.∼ N(0, σ2), (1)

1I will use asterisks ∗ for the true parameters (true group mean, etc.) to emphasize that they are the true parameter. Your lecture notes omit the
asterisks.
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where I(Dayi = M) equals 1 if the ith datapoint was for a Monday, and otherwise equals 0. From here we can write
this in y = Xβ∗ + ε form.

y =



1
−1.5
3
−2
10
...
12
−1


, X =



1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
...

...
...

...
...

0 0 0 1 0
0 1 0 0 0


, µ∗ = β∗ =


µ∗M
µ∗T
µ∗W
µ∗Th
µ∗F

 , ε ∼ N(0, σ2In). (2)

Here, the first column of the design matrix corresponds to I(Dayi = M), and so on. Check for yourself that y =
Xβ∗ + ε indeed describes the same model as (1).

Note that this is exactly the same as encoding a linear model for y against a single categorical variable using
dummy variables, but keeping all the indicator columns and removing the intercept column.

We will use µ instead of β to stick with the notation in the lecture notes and textbook, but you should recognize
that this model is just a special case of the general setting y = Xβ∗ + ε that we studied a lot before the first midterm.

Re-indexing. Let us forget the names of the days of the week, and just think of them as “group 1” to “group 5,” with
true group means µ1, . . . , µ5. Let n1 be the number of datapoints in group 1 (Monday), and so on for n2, . . . , n5. In
one-way ANOVA, it is convenient to change the indexing. For example, instead of y1, . . . , yn where n is the number
of datapoints, your lecture notes and the textbook indexes by group. In the above example, if we arrange y by group,
we can make a table that looks something like

Group 1 1 · · ·
Group 2 −1.5 · · · −1
Group 3 −2 · · ·
Group 4 3 · · · 12
Group 5 10 · · ·

The first row has the y values for the n1 datapoints in group 1, and so on. In your lecture notes, the y values are now
indexed as

yij , i ∈ {1, . . . , 5}, j ∈ {1, . . . , ni},

where i is the group that yij belongs to, and j is its position in the above table. (That is, yij is the jth element in the
ith row of the above table.) We can re-index ε1, . . . , εn as εij similarly. Thus, we can rewrite the model (1) as

yij = µ∗i + εij , εij
i.i.d.∼ N(0, σ2). (3)

Check that this indeed is the same as (1). Similarly, we can convert from this indexing back to something like (2).
(The rows in (2) might be in a different order, but that does not ultimately matter.)

We have seen three ways of writing the model (1). You should be flexible switching between models (2) and (3).

1.2 Not-so-scary formulas
We have see a lot of formulas in the general situation y = Xβ∗+ ε. However, in this special case, a lot of the formulas
can be written down explicitly in terms of natural quantities.

Let us fully wean ourselves off of the concrete example above. Suppose we have t groups (instead of just 5) and we
get observations yij from the model (3). Let n be the total number of observations, and let n1, . . . , nt be the number
of observations in each group respectively.

Exercise 1.1. If we write our design matrix as in (2), check that the dimension of X is n× t. Describe what each row
of X represents, and what each column represents. �
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1.2.1 Least squares coefficients

Let us start with the least squares estimate of µ. We provide three different ways to compute it.

Approach 1: use the general formula. The general formula is

µ̂ = (X>X)−1X>y.

But our X matrix has a very special form, which allows us to write down a very simple expression for µ̂.

Exercise 1.2.

(a) Show

X>X =


n1

n2
. . .

nt

 .
(b) Show

X>y =


∑n1

j=1 y1j∑n2

j=1 y2j
...∑nt

j=1 ytj

 .
In plain words, describe the elements of this vector.

(c) Show

µ̂ =


y1
y2
...
yt

 ,
where yi =

1
ni

∑ni

j=1 yij is the sample mean for group i (mean of the datapoints in group i).

�

Thus, we obtain an intuitive result: the least squares estimate of the true group means µt is the sample group mean.

Approaches 2 and 3: choose µ to minimize the residuals. The other two approaches directly minimize the function

S(µ) = ‖y −Xµ‖2 =

t∑
i=1

ni∑
j=1

(yij − µi)2.

over all vectors µ. (Recall the definition of “least squares.” In the general setting y = Xβ∗ + ε, our function was
S(β) = ‖y − Xβ‖2 =

∑n
i=1(yi − x>i β)2. Check that you understand that the above double sum is essentially the

same thing.)
Here, S is a function whose argument is a vector µ, and the least squares estimate µ̂ is the vector that minimizes

S. Note that µ is some arbitrary vector, and is not the true mean µ∗. (This was a source of confusion for many of you,
which is why I like to use the asterisk µ∗ notation for the true mean.)

One way to minimize S is to compute the gradient with respect to the vector µ and set it to zero. Equivalently,
compute the partial derivative with respect to each µi and set them all to zero.

Exercise 1.3. Compute
∂

∂µi
S(µ).

When you set this to zero, you should get µ̂i = yi. �
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Finally, the last approach is the approach taken in your lecture notes.

S(µ) =

t∑
i=1

ni∑
j=1

(yij − µi)2

=

t∑
i=t

ni∑
j=1

(yij − yi + yi − µi)2 add and subtract y

=

t∑
i=1

ni∑
j=1

(yij − yi)2 + 2

t∑
i=1

(yi − µi)
ni∑
j=1

(yij − yi)︸ ︷︷ ︸
=0

+

t∑
i=1

ni(yi − µi)2 expand the square

=

t∑
i=1

ni∑
j=1

(yij − yi)2 +
t∑
i=1

ni(yi − µi)2.

Again, µ̂ is the vector that minimizes the above expression.

Exercise 1.4. Based on the last expression above, why does choosing µ̂i = yi minimize S(µ)? �

Now that we have µ̂, we can automatically compute the RSS [of the full model M ] by simply plugging µ̂ into S.
(Recall in the general situation y = Xβ∗ + ε, we have RSS = ‖y −Xβ̂‖2 = S(β̂). This is the same thing.)

RSS(M) = S(µ̂) =

t∑
i=1

ni∑
j=1

(yij − yi)2.

The inner sum measures variability within group i, and the outer sum adds all these quantities across the t groups.

1.2.2 Variance decomposition, F -statistic for H0 : µ1 = · · · = µt.

The typical hypothesis that is tested in one-way ANOVA is

H0 : µ1 = · · · = µt, (4)

i.e. the null hypothesis is that all group means are the same. For example, in the case of our earlier dataset, we want to
test if the average lateness/earliness of the bus does not vary with the day of the week.

One quantity that will be useful for us is RSS(m), wherem is the model with the hypothesis’s constraints imposed.
Then the model is simply yij = µ + εij , which is like an intercept-only model. At the very beginning of the course
you showed that then the least squares estimate in the intercept-only model is the mean of the yij , which in our case is
the grand mean

y =
1

n

t∑
i=1

ni∑
j=1

yij .

Then you can use the above work (substitute µi with y for all i) to get

RSS(m) =

t∑
i=1

ni∑
j=1

(yij − y)2

=

t∑
i=1

ni∑
j=1

(yij − yi)2 +
t∑
i=1

ni(yi − y)2.

Note that this is also the TSS! Thus, the decomposition TSS = RSS+RegSS looks like

t∑
i=1

ni∑
j=1

(yij − y)2︸ ︷︷ ︸
TSS

=

t∑
i=1

ni∑
j=1

(yij − yi)2︸ ︷︷ ︸
RSS(M)

+

t∑
i=1

ni(yi − y)2︸ ︷︷ ︸
RegSS(M)

.
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This has a nice interpretation. The left-hand side measures variability of the yij around the grand mean y. The RSS
term measures variability within each group (with respect to the sample group means) and sums this over all groups.
The RegSS term measures variability of the [sample] group means around the grand mean. (See Lab 5 for nice
visualizations.)

Let us now compute the F -statistic. Recall in the y = Xβ∗ + ε setting, when testing a linear hypothesis with
q ≤ p constraints, the general F -statistic is (RSS(m)−RSS(M))/q

RSS(M)/(n−p−1) , where m is the model with the constraints in the
null hypothesis, M is the full model, q is the number of constraints, and n − p − 1 is “n − number of parameters”
or “n − number of columns of X”. Essentially the same formula holds here, provided we compute the degrees of
freedom and the RSS terms correctly.

Exercise 1.5.

(a) How many linear constraints are in the hypothesis (4)?

(b) How many columns does X have?

(c) Plug in our expressions for RSS(M) and RSS(m) to show that the F -statistic is∑t
i=1 ni(yi − y)2/(t− 1)∑t

i=1

∑ni

j=1(yij − yi)2/(n− t)
.

�

This is also interpretable. If the group means are very different (contrary to the hypothesis), then the numerator
ought to be very large relative to the denominator, making the F -statistic large and more likely to be rejected.

1.2.3 Other stuff

Exercise 1.6. Show that µ̂ ∼ N(µ, σ2(X>X)−1). What is Var(µ̂i)? What is Cov(µ̂i, µ̂j) for i 6= j? �

We can also compute the relevant quantities for t-tests. The unbiased estimate for σ2 is

σ̂2 :=
RSS(M)

n− t
=

1

n− t

t∑
i=1

ni∑
j=1

(yij − yi)2.

Having computed σ̂, the t-statistic for testing H0 : µ2 = 0 is then

µ̂2

σ̂
√
((X>X)−1)2,2

=
µ̂2

σ̂/
√
n2
.

The left-hand side is essentially the same as the t-statistic β̂2

σ̂
√

((X>X)−1)2,2
for β2 = 0 in the general setting y =

Xβ∗ + ε. (Recall that this is derived by noting β̂2 ∼ N(0, σ2((X>X)−1)2,2) under this hypothesis, standardizing it

to get β̂

σ
√

((X>X)−1)2,2
∼ N(0, 1), and then replacing σ with σ̂.)

In our current situation, X>X has a special form (see Exercise 1.2), which allows us to arrive at the right-hand
side.

Exercise 1.7. Compute the t-statistic for H0 : µ2 − 3µ3 = 0. (You will be able to write it in terms of µ̂2, µ̂3, σ̂, n2,
and n3.) �

2 Variance-stabilizing transformations
In our linear model

yi = x>i β
∗ + εi, εi

i.i.d.∼ N(0, σ2),
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we have Var(yi) = σ2 and E[yi] = x>i β
∗. In particular, the variance does not vary with the expectation. This is one

of the properties of the linear model that may be violated.
Contrast this with the following model

yi ∼ Poisson(xi),

where Var(yi) = E[yi] = xi. The variance clearly depends on the expectation.
Our goal here is to find a function h such that h(y) has variance not varying with its expectation. That is, we want

h to satisfy
Var(h(y)) = c

for some constant c that does not depend on E[h(y)]. We call this h a variance-stabilizing transformation.
By a Taylor series expansion, a rough approximation yields

h(y) ≈ h(Ey) + h′(Ey) · (y − Ey)
Var(h(y)) ≈ (h′(Ey))2 Var(y).

We want the right-hand side to be constant (with respect to Ey), so we would like

h′(Ey) =
c̃√

Var(y)
(5)

for some constant c̃ that does not depend on Ey.
A rough template for finding the variance-stabilizing h is the following: write Var(y) as a function of Ey and plug

it into the desired equation (5), then find some h that satisfies this equation for any value of Ey.
As an example, consider the Poisson case where Var(y) = E(y). The desired equation (5) becomes

h′(Ey) =
c̃√
Ey

.

Perhaps replacing Ey with a dummy variable will make our task clearer.

h′(z) =
c̃√
z
.

From here, we see that h(z) =
√
z is the desired transformation, since h′(z) = 1√

z
.

Finally, you may have seen the notation ∝ in place of “=” in the lecture notes. This is mainly for convenience to
hide multiplicative constants (the c̃ above).

Exercise 2.1. Find the variance stabilizing h in the following situations.

(a) Var(y) ∝ (Ey)2.

(b) Var(y) ∝ (Ey)2b for b 6= 1.

�

Exercise 2.2. Question 3 on “Optional problems (M2).” �

3 Added variable plot proof intuition
Relevant reading: lecture notes, Fox 11.6.1, misc/coeff comp.pdf on bCourses.

Not realizing that this proof would be covered later in the course, I posted a proof of the first half of the AV plot
theorem (stated below) on bCourses before the first midterm. You may check it out if you are curious. I think it is
shorter and easier to understand, but it may potentially confuse you because the notation is a bit different from the
presentation in the lecture notes. The ingredients of both proofs are essentially the same. Below, I will follow the
lecture notes.

I uploaded a GeoGebra file on bCourses called avplot intuition.ggb. You can play around with a 3D model of
the geometric intuition I want to convey. GeoGebra is free, but if you do not want to download it, I have also uploaded
some static images.

Let us restate the theorem again.
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Theorem 3.1. Let β̂ be the vector of coefficients from the regression of Y on X with residuals ê. Let X(p) be the pth
column of X .

1. Let X(p) be the residuals from regressing X(p) on the other variables (including intercept).

2. Let Y (p) be the residuals from regressing Y on all variables except X(p).

3. Let b(p) be the slope from the simple regression of Y (p) on X(p), with residuals e(p).

Then

b(p) = β̂p,

e(p) = ê.

Note that above, p was chosen arbitrarily, and can be replaced with any j = 1, . . . , p.

Proof of first claim. Recall that the fitted values from a regression can be viewed as the projection of the response
variable onto the span of the explanatory variables. Specifically, Ŷ = HY where H = X(X>X)−1X> is the
projection onto C(X). Therefore, the residuals from the regression of Y on X can be written as

ê = Y − Ŷ = (I −H)Y.

Let V be the matrix formed by dropping the column X(p) from X . Since X(p) and Y (j) are each residuals from
regressions onto V ,

X(p) = (I −H(−p))X(p),

Y (p) = (I −H(−p))Y,

where H(−p) = V (V >V )−1V > is the projection matrix onto C(V ).
Geometrically, what is going on so far? Our original regression was projecting Y onto C(X). But the regressions

in steps 1 and 2 above are essentially projections of Y and X(p) onto C(V ), which is a subspace of C(X).
The residuals X(p) sum to zero, as do the residuals Y (p). (This is because they are residuals from a regression on

V , which has an intercept column.) Therefore, the intercept term in the simple regression in step 3 is zero (recall the
formula for the intercept term.) The slope term can thus be written as

b(p) =
(X(p))>Y (p)

‖X(p)‖2
. (6)

We want to show that β̂p is equal to this slope.
Now recall the definition of least squares. The coefficient β̂ is the minimizer for the optimization problem

min
β
‖Y −Xβ‖2 = min

βp

min
β0,...,βp−1

‖Y − β0~1− β1X(1)− β2X(2)− · · · − βp−1X(p− 1)− βpX(p)‖2.

If β̂ is indeed the minimizer, then β̂0, . . . , β̂p−1 must be the minimizer of the inner minimization problem on the
right-hand side, with β̂p plugged in for βp. That is, β̂0, . . . , β̂p−1 must be the minimizers for

min
β0,...,βp−1

‖(Y − β̂pX(p))− β0~1− β1X(1)− β2X(2)− · · · − βp−1X(p− 1)‖2 = min
α∈Rp
‖(Y − β̂pX(p))−V α‖, (7)

which is just another linear regression problem, specifically the regression of Y − β̂pX(p) onto V . Thus we know
from the normal equation2 for this problem (7) that the minimizing α is

α̂ = (V >V )−1V >(Y − β̂pX(p)).

[This is called “α(β̂p)” in the lecture notes.] Since we said that β̂0, . . . , β̂p−1 are also the minimizers for (7), we
have α̂> = (β̂0, . . . , β̂p−1). This reasoning skips over some arguments in the lecture notes (expanding the square,
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computing gradient, etc.) that are needlessly re-doing the computation for the normal equation that you already know.

Thus,

HY = Xβ̂

HY = V α̂+ β̂pX(p)

HY = V (V >V )−1V (Y − β̂pX(p)) + β̂pX(p) plug in expression for α̂

HY = H(−p)(Y − β̂pX(p)) + β̂pX(p) H(−p) = V (V >V )−1V >

HY = H(−p)Y + β̂p(I −H(−p))X(p)

(I −H(−p))Y = (I −H)Y + β̂p(I −H(−p))X(p)

Y (p) = (I −H)Y + β̂pX
(p)

(X(p))>Y (p)

‖X(p)‖2
= 0 + β̂p.

In the last step we projected both sides onto span{X(p)}, i.e. we multiplied both sides by (X(p))>

‖X(p)‖2 . The first term on

the right-hand side is zero because (I −H)Y is orthogonal to C(X) (which contains X(p) = X(p) −H(−p)X(p)
since X(p) is the sum of two vectors in C(X)).

[Note that I ended the proof slightly differently than the lecture notes did. Both are correct, but this presentation
shows β̂ is equal to (6) directly, rather than to the longer expression Y >(I−H(−p))X(p)

X(p)>(I−H(−p))X(p)
, which I avoided altogether.]

Exercise 3.2. Prove the second claim, that e(p) = ê. [Hint: It follows directly from the previous claim b(p) = β̂p
combined with one of the lines I’ve written above. But on your homework you should base your work on the lecture
notes; this might only add one more line of work.] �

2The formula for α is just adapting the familiar formula “β̂ = (X>X)−1X>y” to this problem, i.e. y is Y − βpX(p) and X is V .
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