STAT 151A: Lab 4

Billy Fang
22 September 2017

Feedback form is at the same place: https://goo.gl/forms/fKjLeKItix2Djg512. Please leave comments
and suggestions for lab, office hours, etc.

1 References and tables

Relevant reading: 6.1.3, 6.2.2, 9.4.1-3 in Fox.

Here are some links to ¢-tables. If you are not yet comfortable with reading a ¢-table, it would be good to practice
on different ¢-tables, since the formatting/notation can differ. The columns can be listed by quantiles, by one-sided
p-values, or by two-sided p-values (or some combination of the above) so make sure you know exactly what you are
reading!

e https://en.wikipedia.org/wiki/Student’%27s_t-distribution#Table_of_selected_values
e http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

e http://math.mit.edu/~vebrunel/Additional’%20lecture20notes/t%20(Student?27s)
%20table.pdf

e https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/

e https://web.stanford.edu/dept/radiology/cgi-bin/classes/stats_data_analysis/lesson_
4/234_5_e.html

Here are links to F'-tables. Be sure to not to mix up the order of the degrees of freedom!

e http://www.socr.ucla.edu/applets.dir/f_table.html

e http://www.stat.purdue.edu/~jtroisi/STAT350Spring2015/tables/FTable.pdf

2 Review of model, and fun facts

Everything we do today will be under the Gaussian model that we have been studying for the past two weeks. Specif-
ically,
y=XpB+e, € ~ N,(0,0%1,),

where 3 is an unknown vector of length p+ 1, where X is a fixed but known n x (p+ 1) matrix (with first column being
all 1s), and where y is random (because of ¢€) and observed vector of length n. We will assume X T X is invertible.
Let N
B=(X"TX)"'XTy

be the least squares coefficients, and let 5 := X B be the fitted values. Let
e=y—y

be the residuals. Recall RSS = ||e]|2.
Recall the following fun facts.
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http://math.mit.edu/~vebrunel/Additional%20lecture%20notes/t%20(Student%27s)%20table.pdf
http://math.mit.edu/~vebrunel/Additional%20lecture%20notes/t%20(Student%27s)%20table.pdf
https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/
https://web.stanford.edu/dept/radiology/cgi-bin/classes/stats_data_analysis/lesson_4/234_5_e.html
https://web.stanford.edu/dept/radiology/cgi-bin/classes/stats_data_analysis/lesson_4/234_5_e.html
http://www.socr.ucla.edu/applets.dir/f_table.html
http://www.stat.purdue.edu/~jtroisi/STAT350Spring2015/tables/FTable.pdf

o B~ Nu(B,02(XTX)™1).
RSS RSS 2

* n—p—1 =ag

~ Xp_p_1.and thus E

° B and e are independent.

3 Testing, in [somewhat] plain English

Explanation \ Coin flip example \ Lin. reg. example

you have data D outcome of many coin flips | y € R” and X € R**®+1
want to test a hypothesis that i.i.d. coin flips above Gaussian model

the data come from some model Is probability of heads p? Is 81 = 2 true?

find a statistic T (D) (a statistic

is a function of data) whose distribution under the hypothesis, under the hypothesis,
(under the hypothesis) you know # heads ~ Binom(np) ﬁ ~tp_p_1
check if statistic T'(D) is likely or unlikely

under its distribution (e.g., using p-value);

if unlikely, reject hypothesis

4 t-test and confidence intervals

4.1 Characterization of the ¢-distribution.

If Z ~ N(0,1) and U ~ x? are independent, then

follows the t-distribution with d degrees of freedom.

4.2 Simple example: testing H, : 3 = 73

‘We want to find a statistic whose distribution we know.
Let V = (X TX )’1, with rows/columns indexed from O to p. First, we know that under the general model,
B3 ~ N(Bs3,0%v3 3), and thus normalizing yields

~

B3 — B3

~ N(0,1).
0,/V3,3
However, under the hypothesis §3 = 73, we have
Bs — 73
Ps=T8 N(0,1).
0,/V3,3
If we knew o, then we could do a Z-test by checking the p-value P(|Z] > f f/zgii ’) of this statistic. If this is very

small, we have evidence to reject the hypothesis.
However, we typically do not know o, so we use our unbiased estimate

o _ _RSS

n—p—1

in place of o2


http://bigbangtheory.wikia.com/wiki/73

Exercise 4.1. What distribution does

B3 — 173
0\/U33
follow? Why? |

Exercise 4.2. Draw a picture of what the p-value of this statistic represents. Write down an expression for the
definition of the p-value (e.g., p-value = P(---)). ~

Suppose the degrees of freedom is n — p — 1 = 100 and the t-statistic is g:"/% = 1.9. Compute the p-value both
using R and using a t-table. ]

4.3 Converting to a confidence interval

The work that we have done already essentially translates to a confidence interval. Instead of 73, let us return to
the unknown (3. The work in the previous part (if we had not substituted 83 = 73) shows that with the definition
SE(fBs) = 0,/U3.3, we know

B3 — B3
SE(Bs)
follows the ¢-distribution with n — p — 1 degrees of freedom. Thus, if ¢ is the 0.95 quantile of this ¢-distribution, then

33—53
Pl —g < < =0.9.
< "= SE(B) ‘q>

By rearranging the inequality, we can rewrite this as

P(Bs — gSE(Bs) < fs < By + SE(Bs) ) = 09,
Thus, R R
B3 £ qSE(Bs)

is a 90% confidence interval for (3.
Exercise 4.3. What do we change in the above procedure if we want a 95% confidence interval instead? |

Exercise 4.4. For n—p—1 = 60, find the appropriate quantile q if we wanted to get a 90% confidence interval, using
a t-table. Double check your answer with R. Repeat the above for a 95% confidence interval. |

4.4 Slightly more complicated example: testing H, : 5, =

This hypothesis can be rewritten
p1—B2=0.
What is the distribution of B\l - 32? We know the vector B\ ~ N, (B,0%(X T X)~1) is [multivariate] Gaussian, so
B1 — B2 is [univariate] Gaussian. (Why?) We know the mean of 51 — 82 is 1 — f2. With V = (X X )~ 1 again, with
rows/columns indexed from 0 to p, we have

Var(Bl — BQ) = Var(ﬁl) + Var(Bg) -2 COV(Bl, 52) = 02(’0171 +v22 — 201 2).
So,

Br— By~ N(B1 — B2, 0% (v11 +v22 — 2v12)),
and thus

By — B2 — (B1 — B2)

02(v11 +va2 —2012)

~ N(0,1)



in the general model. Under the hypothesis 51 = (32, we then have
B — B
o\/v1,1 +v22 —2v12

~ N(0,1).

Similar to before, we can check
B1— B2
RSS
\/ nepot V11 22 — 2012

follows the ¢-distribution with n — p — 1 degrees of freedom. We can then find p-values as before.

Exercise 4.5. How do we get confidence intervals for B1 — B2? |

4.5 General case: linear combination of
This is essentially Question 5 on your homework. There, you show that
2 B—ad B~ N(0,0%2x) (XTX) ag)
g B — (zg B+ €0) ~ N(0,02[1 +ag (X T X) L))

You can imitate the steps from the previous examples to find some statistic that follows a ¢ distribution, and then use
that to obtain a confidence interval for x] 3 and for x{ 3 + €.
Note that this general setup can help with Question 6 on your homework, if you choose x( appropriately.

5 F-tests

5.1 Characterization of the F'-distribution.

IfU ~ x3, and V ~ x3, are independent, then
U/dy
V/dsy

follows the F distribution with degrees of freedom d; and ds.

5.2 Example: testing Hy : 5y = 32 =06, =0
Let p = 4. Let M denote the full model
Yi = Bo + Brwi1 + Pawiz + B3riz + fatia + €. (1)
Let m denote the model with the hypothesis imposed. We can write this smaller model as
Yi = Bo + Bawiz + €.
It turns out that under the hypothesis, we know

(RSS(m) — RSS(M))/3
RSS(M)/(n — 4 — 1)

follows the F distribution with 3 and n — 4 — 1 degrees of freedom. [It is not yet obvious why this is true.] The 3
comes from the fact that we have three constraints 5; = 0, o = 0, 83 = 0. The n — 4 — 1 comes from n minus the
four variables and one intercept.

Exercise 5.1. If we have y and X, explain in words how we could compute the F-statistic? ]



5.3 Example: testing subset of coefficients is zero

More generally, suppose we have p variables, and we want to test whether a particular subset of ¢ coefficients is zero.
Then if we form the smaller model m by dropping those ¢ coefficients, it turns out that under the hypothesis, we know
(RSS(m) — RSS(M))/q
RSS(M)/(n—p— 1)

follows the F'-distribution with g and n — p — 1 degrees of freedom.
Again, it is not obvious why this follows an F'-distribution. If we rewrite the statistic as
SS(m)—RSS
RSS(m)—RSS(M) /q

g

Rs(sng) /(

n—p—l)7

then we can use our fun fact that %(QM) ~ x%_p_l to see part of the characterization of the F'-distribution. We

would need to show w ~ X2 and that RSS(m) — RSS(M) and RSS(M) are independent. But at this
point, this is not obvious.

Exercise 5.2. Again, if we have y and X, explain in words how we could compute the F-statistic? ]

An unusual F'-statistic will be large (indicating that the larger model M is significantly better than the small model
m). The p-value for this F'-statistic is

P<F > (BSS(m) — RSS(M))/C])’

RSS(M)/(n—p—1)

where F' follows the F' distribution with degrees of freedom ¢ and n — p — 1. [Draw a picture: it is the right tail of the
distribution. ]

Exercise 5.3. Suppose ¢ = 2 and n —p — 1 = 30. Use an F-table to find the p-value of this F-statistic is

(RSS(m)—RSS(M))/q _ )
RSS(M)/(n—p—1) 1 = 2.9. Check with R. -

5.4 Example: testing Hy : 81 = (B2, 03 = —204

Let p = 4 and consider the above hypothesis. Let M be the full model (1) as before.

Exercise 5.4. Write down the model m with the hypothesis imposed, using only 3 of the coefficients By, ...,Bs. W
Again, it turns out that under the hypothesis,

(RSS(m) — RSS(M))/2
RSS(M)/(n —4—1)

follows the F distribution with degrees of freedom 2 and n — 4 — 1.

Exercise 5.5. Again, if we have y and X, explain in words how we could compute the F'-statistic? |

6 General formula for testing linear hypotheses

(See section 9.4.3.)
The most general setting we can consider is

HO : Lﬁ =,
for some ¢ x (p + 1) matrix L with full row rank ¢ < p + 1, and g-dimensional vector c.
Exercise 6.1. For p = 4, write the hypothesis Hy : 1 = 2 = 84 = 0 in this form. ]

Exercise 6.2. For p = 4 write the previous hypothesis Hy : B, = (2, 83 = —204, in this form. [ |



Let m be the smaller model with the hypothesis L3 = ¢ imposed. This hypothesis has ¢ linear constraints, so
under the hypothesis, it turns out that we know
(RSS(m) — RSS(M))/q
RSS(M)/(n—p— 1)

follows the F' distribution with degrees of freedom g and n — p — 1.
Let us finally “prove” this.

Lemma 6.3. Let m represent the smaller model with the hypothesis LG = ¢ imposed. Then under the hypothesis
LB = ¢, we have the equality

RSS(m) —RSS(M) (LB —¢)T[L(XTX)"'LT]"Y (LB - ¢)

2 = 2 )

g g

and both sides follow the Xﬁ distribution.

Proof sketch (optional). The proofs of these two facts (the equality, and the fact that both quantities follow the xg distribution) are quite tedious,
so we offer a very rough sketch with many missing steps.

If ¢ = 0, then using an orthogonality argument one can show that RSS(m) — RSS(M) = || Py||? where P is the projection onto the column
space of X (X TX )flLT. This yields the first equality when ¢ = 0. If ¢ # 0, then we have to deal with projections onto affine spaces (rather than
subspaces), and the “—c” terms in stated inequality account for that.

Next we describe how to prove that the right-hand side follows the xZ distribution. First note LB—c=LB—LA~ N(0,02L(XTX)L~1).

Then LB\ — c can be written as o Az for z ~ N(0, I,) for a matrix A satisfying AAT = L(X T X)~!'LT (e.g., by Cholesky decomposition or
eigen-decomposition). Thus the right-hand side can be rewritten as

2TATIL(XTX) LT Az,

One can show that AT [L(X T X)~'LT]~1 A is idempotent and symmetric with trace g, so this quadratic form has the xg distribution. O

From this lemma, it is now finally clear why the F-statistic we were looking at follows the F-distribution. In
particular, we can write the F-statistic as

(RSS(m) —RSS(M))/q (LB —¢)T[L(XTX) 'L (LB~ ¢)/q

) . 2

RSS(M)/(n—p— 1) RSS(M)/(n—p— 1) ?

Exercise 6.4. Under the hypothesis L3 = ¢, what distribution does this quantity (2) follow, and why? |
Exercise 6.5. Express the hypothesis Hy : f1 = B2 = --- = B4 = 0 for ¢ < p, in the form Hy : L3 = c. What
does (2) look like in this case? Compare with equation (9.16) in the textbook. |
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