STAT 151A: Lab 4

Billy Fang

22 September 2017

Feedback form is at the same place: https://goo.gl/forms/fKjLeKItix2Djg5l2. Please leave comments and suggestions for lab, office hours, etc.

1 References and tables

Relevant reading: 6.1.3, 6.2.2, 9.4.1-3 in Fox.

Here are some links to t-tables. If you are not yet comfortable with reading a t-table, it would be good to practice on different t-tables, since the formatting/notation can differ. The columns can be listed by quantiles, by one-sided p-values, or by two-sided p-values (or some combination of the above) so make sure you know exactly what you are reading!

- https://en.wikipedia.org/wiki/Student\'s_t-distribution\#Table_of_selected_values
- http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
- http://math.mit.edu/~vebrunel/Additional\ lecture\ notes/t\ (Student\%27s) \%20table.pdf
- https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/
- https://web.stanford.edu/dept/radiology/cgi-bin/classes/stats_data_analysis/lesson_ 4/234_5_e.html

Here are links to F-tables. Be sure to not to mix up the order of the degrees of freedom!

- http://www.socr.ucla.edu/applets.dir/f_table.html
- http://www.stat.purdue.edu/~jtroisi/STAT350Spring2015/tables/FTable.pdf

2 Review of model, and fun facts

Everything we do today will be under the Gaussian model that we have been studying for the past two weeks. Specifically,

$$
y=X \beta+\epsilon, \quad \epsilon \sim N_{n}\left(0, \sigma^{2} I_{n}\right)
$$

where β is an unknown vector of length $p+1$, where X is a fixed but known $n \times(p+1)$ matrix (with first column being all 1s), and where y is random (because of ϵ) and observed vector of length n. We will assume $X^{\top} X$ is invertible.

Let

$$
\widehat{\beta}:=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

be the least squares coefficients, and let $\widehat{y}:=X \widehat{\beta}$ be the fitted values. Let

$$
e:=y-\widehat{y}
$$

be the residuals. Recall RSS $:=\|e\|^{2}$.
Recall the following fun facts.

- $\widehat{\beta} \sim N_{n}\left(\beta, \sigma^{2}\left(X^{\top} X\right)^{-1}\right)$.
- $\frac{\mathrm{RSS}}{\sigma^{2}} \sim \chi_{n-p-1}^{2}$, and thus $\mathbb{E} \frac{\mathrm{RSS}}{n-p-1}=\sigma^{2}$
- $\widehat{\beta}$ and e are independent.

3 Testing, in [somewhat] plain English

Explanation	Coin flip example	Lin. reg. example
you have data D	outcome of many coin flips	$y \in \mathbb{R}^{n}$ and $X \in \mathbb{R}^{n \times(p+1)}$
want to test a hypothesis that	above Gaussian model	
the data come from some model	Is probability of heads p ?	Is $\beta_{1}=2$ true?
find a statistic $T(D)$ (a statistic		
is a function of data) whose distribution (under the hypothesis) you know	under the hypothesis,	under the hypothesis,
check if statistic $T(D)$ is likely or unlikely		
under its distribution (e.g., using p-value);		$\frac{\widehat{\beta}_{1}-2}{\sqrt{\frac{R S S}{n-p-1}} \sqrt{v_{11}}} \sim t_{n-p-1}$
if unlikely, reject hypothesis		

4 t-test and confidence intervals

4.1 Characterization of the t-distribution.

If $Z \sim N(0,1)$ and $U \sim \chi_{d}^{2}$ are independent, then

$$
\frac{Z}{\sqrt{U / d}}
$$

follows the t-distribution with d degrees of freedom.

4.2 Simple example: testing $H_{0}: \beta_{3}=73$

We want to find a statistic whose distribution we know.
Let $V=\left(X^{\top} X\right)^{-1}$, with rows/columns indexed from 0 to p. First, we know that under the general model, $\widehat{\beta}_{3} \sim N\left(\beta_{3}, \sigma^{2} v_{3,3}\right)$, and thus normalizing yields

$$
\frac{\widehat{\beta}_{3}-\beta_{3}}{\sigma \sqrt{v_{3,3}}} \sim N(0,1)
$$

However, under the hypothesis $\beta_{3}=73$, we have

$$
\frac{\widehat{\beta}_{3}-73}{\sigma \sqrt{v_{3,3}}} \sim N(0,1)
$$

If we knew σ, then we could do a Z-test by checking the p-value $\mathbb{P}\left(|Z| \geq\left|\frac{\widehat{\beta}_{3}-73}{\sigma \sqrt{v_{3,3}}}\right|\right)$ of this statistic. If this is very small, we have evidence to reject the hypothesis.

However, we typically do not know σ, so we use our unbiased estimate

$$
\widehat{\sigma}^{2}=\frac{\mathrm{RSS}}{n-p-1}
$$

in place of σ^{2}.

Exercise 4.1. What distribution does

$$
\frac{\widehat{\beta}_{3}-73}{\widehat{\sigma} \sqrt{v_{3,3}}}
$$

follow? Why?
Exercise 4.2. Draw a picture of what the p-value of this statistic represents. Write down an expression for the definition of the p-value (e.g., p-value $=\mathbb{P}(\cdots)$).

Suppose the degrees of freedom is $n-p-1=100$ and the t-statistic is $\frac{\widehat{\beta}_{3}-73}{\widehat{\sigma} \sqrt{v_{3,3}}}=1.9$. Compute the p-value both using R and using a t-table.

4.3 Converting to a confidence interval

The work that we have done already essentially translates to a confidence interval. Instead of 73 , let us return to the unknown β_{3}. The work in the previous part (if we had not substituted $\beta_{3}=73$) shows that with the definition $\operatorname{SE}\left(\widehat{\beta}_{3}\right):=\widehat{\sigma} \sqrt{v_{3,3}}$, we know

$$
\frac{\widehat{\beta}_{3}-\beta_{3}}{\operatorname{SE}\left(\widehat{\beta}_{3}\right)}
$$

follows the t-distribution with $n-p-1$ degrees of freedom. Thus, if q is the 0.95 quantile of this t-distribution, then

$$
\mathbb{P}\left(-q \leq \frac{\widehat{\beta}_{3}-\beta_{3}}{\mathrm{SE}\left(\widehat{\beta}_{3}\right)} \leq q\right)=0.9
$$

By rearranging the inequality, we can rewrite this as

$$
\mathbb{P}\left(\widehat{\beta}_{3}-q \operatorname{SE}\left(\widehat{\beta}_{3}\right) \leq \beta_{3} \leq \widehat{\beta}_{3}+q \operatorname{SE}\left(\widehat{\beta}_{3}\right)\right)=0.9 .
$$

Thus,

$$
\widehat{\beta}_{3} \pm q \mathrm{SE}\left(\widehat{\beta}_{3}\right)
$$

is a 90% confidence interval for β_{3}.
Exercise 4.3. What do we change in the above procedure if we want a 95% confidence interval instead?
Exercise 4.4. For $n-p-1=60$, find the appropriate quantile q if we wanted to get a 90% confidence interval, using a t-table. Double check your answer with R. Repeat the above for a 95% confidence interval.

4.4 Slightly more complicated example: testing $H_{0}: \beta_{1}=\beta_{2}$

This hypothesis can be rewritten

$$
\beta_{1}-\beta_{2}=0
$$

What is the distribution of $\widehat{\beta}_{1}-\widehat{\beta}_{2}$? We know the vector $\widehat{\beta} \sim N_{n}\left(\beta, \sigma^{2}\left(X^{\top} X\right)^{-1}\right)$ is [multivariate] Gaussian, so $\widehat{\beta}_{1}-\widehat{\beta}_{2}$ is [univariate] Gaussian. (Why?) We know the mean of $\widehat{\beta}_{1}-\widehat{\beta}_{2}$ is $\beta_{1}-\beta_{2}$. With $V:=\left(X^{\top} X\right)^{-1}$ again, with rows/columns indexed from 0 to p, we have

$$
\operatorname{Var}\left(\widehat{\beta}_{1}-\widehat{\beta}_{2}\right)=\operatorname{Var}\left(\widehat{\beta}_{1}\right)+\operatorname{Var}\left(\widehat{\beta}_{2}\right)-2 \operatorname{Cov}\left(\widehat{\beta}_{1}, \widehat{\beta}_{2}\right)=\sigma^{2}\left(v_{1,1}+v_{2,2}-2 v_{1,2}\right)
$$

So,

$$
\widehat{\beta}_{1}-\widehat{\beta}_{2} \sim N\left(\beta_{1}-\beta_{2}, \sigma^{2}\left(v_{1,1}+v_{2,2}-2 v_{1,2}\right)\right)
$$

and thus

$$
\frac{\widehat{\beta}_{1}-\widehat{\beta}_{2}-\left(\beta_{1}-\beta_{2}\right)}{\sigma^{2}\left(v_{1,1}+v_{2,2}-2 v_{1,2}\right)} \sim N(0,1)
$$

in the general model. Under the hypothesis $\beta_{1}=\beta_{2}$, we then have

$$
\frac{\widehat{\beta}_{1}-\widehat{\beta}_{2}}{\sigma \sqrt{v_{1,1}+v_{2,2}-2 v_{1,2}}} \sim N(0,1)
$$

Similar to before, we can check

$$
\frac{\widehat{\beta}_{1}-\widehat{\beta}_{2}}{\sqrt{\frac{\mathrm{RSS}}{n-p-1}} \sqrt{v_{1,1}+v_{2,2}-2 v_{1,2}}}
$$

follows the t-distribution with $n-p-1$ degrees of freedom. We can then find p-values as before.
Exercise 4.5. How do we get confidence intervals for $\beta_{1}-\beta_{2}$?

4.5 General case: linear combination of β

This is essentially Question 5 on your homework. There, you show that

$$
\begin{aligned}
x_{0}^{\top} \widehat{\beta}-x_{0}^{\top} \beta & \sim N\left(0, \sigma^{2} x_{0}^{\top}\left(X^{\top} X\right)^{-1} x_{0}\right) \\
x_{0}^{\top} \widehat{\beta}-\left(x_{0}^{\top} \beta+\epsilon_{0}\right) & \sim N\left(0, \sigma^{2}\left[1+x_{0}^{\top}\left(X^{\top} X\right)^{-1} x_{0}\right]\right)
\end{aligned}
$$

You can imitate the steps from the previous examples to find some statistic that follows a t distribution, and then use that to obtain a confidence interval for $x_{0}^{\top} \beta$ and for $x_{0}^{\top} \beta+\epsilon_{0}$.

Note that this general setup can help with Question 6 on your homework, if you choose x_{0} appropriately.

5 F-tests

5.1 Characterization of the F-distribution.

If $U \sim \chi_{d_{1}}^{2}$ and $V \sim \chi_{d_{2}}^{2}$ are independent, then

$$
\frac{U / d_{1}}{V / d_{2}}
$$

follows the F distribution with degrees of freedom d_{1} and d_{2}.

5.2 Example: testing $H_{0}: \beta_{1}=\beta_{2}=\beta_{4}=0$

Let $p=4$. Let M denote the full model

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}+\beta_{4} x_{i 4}+\epsilon_{i} \tag{1}
\end{equation*}
$$

Let m denote the model with the hypothesis imposed. We can write this smaller model as

$$
y_{i}=\beta_{0}+\beta_{3} x_{i 3}+\epsilon_{i} .
$$

It turns out that under the hypothesis, we know

$$
\frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / 3}{\operatorname{RSS}(M) /(n-4-1)}
$$

follows the F distribution with 3 and $n-4-1$ degrees of freedom. [It is not yet obvious why this is true.] The 3 comes from the fact that we have three constraints $\beta_{1}=0, \beta_{2}=0, \beta_{3}=0$. The $n-4-1$ comes from n minus the four variables and one intercept.

Exercise 5.1. If we have y and X, explain in words how we could compute the F-statistic?

5.3 Example: testing subset of coefficients is zero

More generally, suppose we have p variables, and we want to test whether a particular subset of q coefficients is zero. Then if we form the smaller model m by dropping those q coefficients, it turns out that under the hypothesis, we know

$$
\frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / q}{\operatorname{RSS}(M) /(n-p-1)}
$$

follows the F-distribution with q and $n-p-1$ degrees of freedom.
Again, it is not obvious why this follows an F-distribution. If we rewrite the statistic as

$$
\frac{\frac{\operatorname{RSS}(m)-\operatorname{RSS}(M)}{\sigma^{2}} / q}{\frac{\operatorname{RSS}(M)}{\sigma^{2}} /(n-p-1)},
$$

then we can use our fun fact that $\frac{\operatorname{RSS}(M)}{\sigma^{2}} \sim \chi_{n-p-1}^{2}$ to see part of the characterization of the F-distribution. We would need to show $\frac{\operatorname{RSS}(m)-\operatorname{RSS}(M)}{\sigma^{2}} \sim \chi_{q}^{2}$ and that $\operatorname{RSS}(m)-\operatorname{RSS}(M)$ and $\operatorname{RSS}(M)$ are independent. But at this point, this is not obvious.

Exercise 5.2. Again, if we have y and X, explain in words how we could compute the F-statistic?
An unusual F-statistic will be large (indicating that the larger model M is significantly better than the small model m). The p-value for this F-statistic is

$$
\mathbb{P}\left(F \geq \frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / q}{\operatorname{RSS}(M) /(n-p-1)}\right)
$$

where F follows the F distribution with degrees of freedom q and $n-p-1$. [Draw a picture: it is the right tail of the distribution.]

Exercise 5.3. Suppose $q=2$ and $n-p-1=30$. Use an F-table to find the p-value of this F-statistic is $\frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / q}{\operatorname{RSS}(M) /(n-p-1)}=2.9$. Check with R.
5.4 Example: testing $H_{0}: \beta_{1}=\beta_{2}, \beta_{3}=-2 \beta_{4}$

Let $p=4$ and consider the above hypothesis. Let M be the full model (1) as before.
Exercise 5.4. Write down the model m with the hypothesis imposed, using only 3 of the coefficients $\beta_{0}, \ldots, \beta_{4}$.
Again, it turns out that under the hypothesis,

$$
\frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / 2}{\operatorname{RSS}(M) /(n-4-1)}
$$

follows the F distribution with degrees of freedom 2 and $n-4-1$.
Exercise 5.5. Again, if we have y and X, explain in words how we could compute the F-statistic?

6 General formula for testing linear hypotheses

(See section 9.4.3.)
The most general setting we can consider is

$$
H_{0}: L \beta=c
$$

for some $q \times(p+1)$ matrix L with full row rank $q \leq p+1$, and q-dimensional vector c.
Exercise 6.1. For $p=4$, write the hypothesis $H_{0}: \beta_{1}=\beta_{2}=\beta_{4}=0$ in this form.
Exercise 6.2. For $p=4$ write the previous hypothesis $H_{0}: \beta_{1}=\beta_{2}, \beta_{3}=-2 \beta_{4}$, in this form.

Let m be the smaller model with the hypothesis $L \beta=c$ imposed. This hypothesis has q linear constraints, so under the hypothesis, it turns out that we know

$$
\frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / q}{\operatorname{RSS}(M) /(n-p-1)}
$$

follows the F distribution with degrees of freedom q and $n-p-1$.
Let us finally "prove" this.
Lemma 6.3. Let m represent the smaller model with the hypothesis $L \beta=c$ imposed. Then under the hypothesis $L \beta=c$, we have the equality

$$
\frac{\operatorname{RSS}(m)-\operatorname{RSS}(M)}{\sigma^{2}}=\frac{(L \widehat{\beta}-c)^{\top}\left[L\left(X^{\top} X\right)^{-1} L^{\top}\right]^{-1}(L \widehat{\beta}-c)}{\sigma^{2}}
$$

and both sides follow the χ_{q}^{2} distribution.
Proof sketch (optional). The proofs of these two facts (the equality, and the fact that both quantities follow the χ_{q}^{2} distribution) are quite tedious, so we offer a very rough sketch with many missing steps.

If $c=0$, then using an orthogonality argument one can show that $\operatorname{RSS}(m)-\operatorname{RSS}(M)=\|P y\|^{2}$ where P is the projection onto the column space of $X\left(X^{\top} X\right)^{-1} L^{\top}$. This yields the first equality when $c=0$. If $c \neq 0$, then we have to deal with projections onto affine spaces (rather than subspaces), and the " $-c$ " terms in stated inequality account for that.

Next we describe how to prove that the right-hand side follows the χ_{q}^{2} distribution. First note $L \widehat{\beta}-c=L \widehat{\beta}-L \beta \sim N\left(0, \sigma^{2} L\left(X^{\top} X\right) L^{-1}\right)$. Then $L \widehat{\beta}-c$ can be written as $\sigma A z$ for $z \sim N\left(0, I_{q}\right)$ for a matrix A satisfying $A A^{\top}=L\left(X^{\top} X\right)^{-1} L^{\top}$ (e.g., by Cholesky decomposition or eigen-decomposition). Thus the right-hand side can be rewritten as

$$
z^{\top} A^{\top}\left[L\left(X^{\top} X\right)^{-1} L^{\top}\right]^{-1} A z
$$

One can show that $A^{\top}\left[L\left(X^{\top} X\right)^{-1} L^{\top}\right]^{-1} A$ is idempotent and symmetric with trace q, so this quadratic form has the χ_{q}^{2} distribution.
From this lemma, it is now finally clear why the F-statistic we were looking at follows the F-distribution. In particular, we can write the F-statistic as

$$
\begin{equation*}
\frac{(\operatorname{RSS}(m)-\operatorname{RSS}(M)) / q}{\operatorname{RSS}(M) /(n-p-1)}=\frac{(L \widehat{\beta}-c)^{\top}\left[L\left(X^{\top} X\right)^{-1} L^{\top}\right]^{-1}(L \widehat{\beta}-c) / q}{\operatorname{RSS}(M) /(n-p-1)} \tag{2}
\end{equation*}
$$

Exercise 6.4. Under the hypothesis $L \beta=c$, what distribution does this quantity (2) follow, and why?
Exercise 6.5. Express the hypothesis $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{q}=0$ for $q \leq p$, in the form $H_{0}: L \beta=c$. What does (2) look like in this case? Compare with equation (9.16) in the textbook.

