
STAT 151A: Lab 4

Billy Fang

22 September 2017

Feedback form is at the same place: https://goo.gl/forms/fKjLeKItix2Djg5l2. Please leave comments
and suggestions for lab, office hours, etc.

1 References and tables
Relevant reading: 6.1.3, 6.2.2, 9.4.1-3 in Fox.

Here are some links to t-tables. If you are not yet comfortable with reading a t-table, it would be good to practice
on different t-tables, since the formatting/notation can differ. The columns can be listed by quantiles, by one-sided
p-values, or by two-sided p-values (or some combination of the above) so make sure you know exactly what you are
reading!

• https://en.wikipedia.org/wiki/Student%27s_t-distribution#Table_of_selected_values

• http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf

• http://math.mit.edu/~vebrunel/Additional%20lecture%20notes/t%20(Student%27s)

%20table.pdf

• https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/

• https://web.stanford.edu/dept/radiology/cgi-bin/classes/stats_data_analysis/lesson_

4/234_5_e.html

Here are links to F -tables. Be sure to not to mix up the order of the degrees of freedom!

• http://www.socr.ucla.edu/applets.dir/f_table.html

• http://www.stat.purdue.edu/~jtroisi/STAT350Spring2015/tables/FTable.pdf

2 Review of model, and fun facts
Everything we do today will be under the Gaussian model that we have been studying for the past two weeks. Specif-
ically,

y = Xβ + ε, ε ∼ Nn(0, σ2In),

where β is an unknown vector of length p+1, whereX is a fixed but known n×(p+1) matrix (with first column being
all 1s), and where y is random (because of ε) and observed vector of length n. We will assume X>X is invertible.

Let
β̂ := (X>X)−1X>y

be the least squares coefficients, and let ŷ := Xβ̂ be the fitted values. Let

e := y − ŷ

be the residuals. Recall RSS := ‖e‖2.
Recall the following fun facts.
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• β̂ ∼ Nn(β, σ2(X>X)−1).

• RSS
σ2 ∼ χ2

n−p−1, and thus E RSS
n−p−1 = σ2

• β̂ and e are independent.

3 Testing, in [somewhat] plain English

Explanation Coin flip example Lin. reg. example
you have data D outcome of many coin flips y ∈ Rn and X ∈ Rn×(p+1)

want to test a hypothesis that i.i.d. coin flips above Gaussian model
the data come from some model Is probability of heads p? Is β1 = 2 true?
find a statistic T (D) (a statistic
is a function of data) whose distribution under the hypothesis, under the hypothesis,
(under the hypothesis) you know # heads ∼ Binom(np) β̂1−2√

RSS
n−p−1

√
v11
∼ tn−p−1

check if statistic T (D) is likely or unlikely
under its distribution (e.g., using p-value);
if unlikely, reject hypothesis

4 t-test and confidence intervals

4.1 Characterization of the t-distribution.
If Z ∼ N(0, 1) and U ∼ χ2

d are independent, then

Z√
U/d

follows the t-distribution with d degrees of freedom.

4.2 Simple example: testing H0 : β3 = 73

We want to find a statistic whose distribution we know.
Let V = (X>X)−1, with rows/columns indexed from 0 to p. First, we know that under the general model,

β̂3 ∼ N(β3, σ
2v3,3), and thus normalizing yields

β̂3 − β3
σ
√
v3,3

∼ N(0, 1).

However, under the hypothesis β3 = 73, we have

β̂3 − 73

σ
√
v3,3

∼ N(0, 1).

If we knew σ, then we could do a Z-test by checking the p-value P(|Z| ≥
∣∣∣ β̂3−73
σ
√
v3,3

∣∣∣) of this statistic. If this is very
small, we have evidence to reject the hypothesis.

However, we typically do not know σ, so we use our unbiased estimate

σ̂2 =
RSS

n− p− 1

in place of σ2.
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Exercise 4.1. What distribution does
β̂3 − 73

σ̂
√
v3,3

follow? Why? �

Exercise 4.2. Draw a picture of what the p-value of this statistic represents. Write down an expression for the
definition of the p-value (e.g., p-value = P(· · · )).

Suppose the degrees of freedom is n− p− 1 = 100 and the t-statistic is β̂3−73
σ̂
√
v3,3

= 1.9. Compute the p-value both
using R and using a t-table. �

4.3 Converting to a confidence interval
The work that we have done already essentially translates to a confidence interval. Instead of 73, let us return to
the unknown β3. The work in the previous part (if we had not substituted β3 = 73) shows that with the definition
SE(β̂3) := σ̂

√
v3,3, we know

β̂3 − β3
SE(β̂3)

follows the t-distribution with n− p− 1 degrees of freedom. Thus, if q is the 0.95 quantile of this t-distribution, then

P

(
−q ≤ β̂3 − β3

SE(β̂3)
≤ q

)
= 0.9.

By rearranging the inequality, we can rewrite this as

P
(
β̂3 − q SE(β̂3) ≤ β3 ≤ β̂3 + q SE(β̂3)

)
= 0.9.

Thus,
β̂3 ± q SE(β̂3)

is a 90% confidence interval for β3.

Exercise 4.3. What do we change in the above procedure if we want a 95% confidence interval instead? �

Exercise 4.4. For n−p−1 = 60, find the appropriate quantile q if we wanted to get a 90% confidence interval, using
a t-table. Double check your answer with R. Repeat the above for a 95% confidence interval. �

4.4 Slightly more complicated example: testing H0 : β1 = β2

This hypothesis can be rewritten
β1 − β2 = 0.

What is the distribution of β̂1 − β̂2? We know the vector β̂ ∼ Nn(β, σ2(X>X)−1) is [multivariate] Gaussian, so
β̂1− β̂2 is [univariate] Gaussian. (Why?) We know the mean of β̂1− β̂2 is β1−β2. With V := (X>X)−1 again, with
rows/columns indexed from 0 to p, we have

Var(β̂1 − β̂2) = Var(β̂1) + Var(β̂2)− 2Cov(β̂1, β̂2) = σ2(v1,1 + v2,2 − 2v1,2).

So,
β̂1 − β̂2 ∼ N(β1 − β2, σ2(v1,1 + v2,2 − 2v1,2)),

and thus
β̂1 − β̂2 − (β1 − β2)
σ2(v1,1 + v2,2 − 2v1,2)

∼ N(0, 1)

3



in the general model. Under the hypothesis β1 = β2, we then have

β̂1 − β̂2
σ
√
v1,1 + v2,2 − 2v1,2

∼ N(0, 1).

Similar to before, we can check
β̂1 − β̂2√

RSS
n−p−1

√
v1,1 + v2,2 − 2v1,2

follows the t-distribution with n− p− 1 degrees of freedom. We can then find p-values as before.

Exercise 4.5. How do we get confidence intervals for β1 − β2? �

4.5 General case: linear combination of β
This is essentially Question 5 on your homework. There, you show that

x>0 β̂ − x>0 β ∼ N(0, σ2x>0 (X
>X)−1x0)

x>0 β̂ − (x>0 β + ε0) ∼ N(0, σ2[1 + x>0 (X
>X)−1x0])

You can imitate the steps from the previous examples to find some statistic that follows a t distribution, and then use
that to obtain a confidence interval for x>0 β and for x>0 β + ε0.

Note that this general setup can help with Question 6 on your homework, if you choose x0 appropriately.

5 F -tests

5.1 Characterization of the F -distribution.
If U ∼ χ2

d1
and V ∼ χ2

d2
are independent, then

U/d1
V/d2

follows the F distribution with degrees of freedom d1 and d2.

5.2 Example: testing H0 : β1 = β2 = β4 = 0

Let p = 4. Let M denote the full model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi. (1)

Let m denote the model with the hypothesis imposed. We can write this smaller model as

yi = β0 + β3xi3 + εi.

It turns out that under the hypothesis, we know

(RSS(m)− RSS(M))/3

RSS(M)/(n− 4− 1)

follows the F distribution with 3 and n − 4 − 1 degrees of freedom. [It is not yet obvious why this is true.] The 3
comes from the fact that we have three constraints β1 = 0, β2 = 0, β3 = 0. The n − 4 − 1 comes from n minus the
four variables and one intercept.

Exercise 5.1. If we have y and X , explain in words how we could compute the F -statistic? �
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5.3 Example: testing subset of coefficients is zero
More generally, suppose we have p variables, and we want to test whether a particular subset of q coefficients is zero.
Then if we form the smaller model m by dropping those q coefficients, it turns out that under the hypothesis, we know

(RSS(m)− RSS(M))/q

RSS(M)/(n− p− 1)

follows the F -distribution with q and n− p− 1 degrees of freedom.
Again, it is not obvious why this follows an F -distribution. If we rewrite the statistic as

RSS(m)−RSS(M)
σ2 /q

RSS(M)
σ2 /(n− p− 1)

,

then we can use our fun fact that RSS(M)
σ2 ∼ χ2

n−p−1 to see part of the characterization of the F -distribution. We
would need to show RSS(m)−RSS(M)

σ2 ∼ χ2
q and that RSS(m) − RSS(M) and RSS(M) are independent. But at this

point, this is not obvious.

Exercise 5.2. Again, if we have y and X , explain in words how we could compute the F -statistic? �

An unusual F -statistic will be large (indicating that the larger modelM is significantly better than the small model
m). The p-value for this F -statistic is

P
(
F ≥ (RSS(m)− RSS(M))/q

RSS(M)/(n− p− 1)

)
,

where F follows the F distribution with degrees of freedom q and n− p− 1. [Draw a picture: it is the right tail of the
distribution.]

Exercise 5.3. Suppose q = 2 and n − p − 1 = 30. Use an F -table to find the p-value of this F -statistic is
(RSS(m)−RSS(M))/q
RSS(M)/(n−p−1) = 2.9. Check with R. �

5.4 Example: testing H0 : β1 = β2, β3 = −2β4
Let p = 4 and consider the above hypothesis. Let M be the full model (1) as before.

Exercise 5.4. Write down the model m with the hypothesis imposed, using only 3 of the coefficients β0, . . . , β4. �

Again, it turns out that under the hypothesis,

(RSS(m)− RSS(M))/2

RSS(M)/(n− 4− 1)

follows the F distribution with degrees of freedom 2 and n− 4− 1.

Exercise 5.5. Again, if we have y and X , explain in words how we could compute the F -statistic? �

6 General formula for testing linear hypotheses
(See section 9.4.3.)

The most general setting we can consider is

H0 : Lβ = c,

for some q × (p+ 1) matrix L with full row rank q ≤ p+ 1, and q-dimensional vector c.

Exercise 6.1. For p = 4, write the hypothesis H0 : β1 = β2 = β4 = 0 in this form. �

Exercise 6.2. For p = 4 write the previous hypothesis H0 : β1 = β2, β3 = −2β4, in this form. �
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Let m be the smaller model with the hypothesis Lβ = c imposed. This hypothesis has q linear constraints, so
under the hypothesis, it turns out that we know

(RSS(m)− RSS(M))/q

RSS(M)/(n− p− 1)

follows the F distribution with degrees of freedom q and n− p− 1.
Let us finally “prove” this.

Lemma 6.3. Let m represent the smaller model with the hypothesis Lβ = c imposed. Then under the hypothesis
Lβ = c, we have the equality

RSS(m)− RSS(M)

σ2
=

(Lβ̂ − c)>[L(X>X)−1L>]−1(Lβ̂ − c)
σ2

,

and both sides follow the χ2
q distribution.

Proof sketch (optional). The proofs of these two facts (the equality, and the fact that both quantities follow the χ2
q distribution) are quite tedious,

so we offer a very rough sketch with many missing steps.
If c = 0, then using an orthogonality argument one can show that RSS(m)−RSS(M) = ‖Py‖2 where P is the projection onto the column

space ofX(X>X)−1L>. This yields the first equality when c = 0. If c 6= 0, then we have to deal with projections onto affine spaces (rather than
subspaces), and the “−c” terms in stated inequality account for that.

Next we describe how to prove that the right-hand side follows the χ2
q distribution. First note Lβ̂−c = Lβ̂−Lβ ∼ N(0, σ2L(X>X)L−1).

Then Lβ̂ − c can be written as σAz for z ∼ N(0, Iq) for a matrix A satisfying AA> = L(X>X)−1L> (e.g., by Cholesky decomposition or
eigen-decomposition). Thus the right-hand side can be rewritten as

z>A>[L(X>X)−1L>]−1Az.

One can show that A>[L(X>X)−1L>]−1A is idempotent and symmetric with trace q, so this quadratic form has the χ2
q distribution.

From this lemma, it is now finally clear why the F-statistic we were looking at follows the F-distribution. In
particular, we can write the F-statistic as

(RSS(m)− RSS(M))/q

RSS(M)/(n− p− 1)
=

(Lβ̂ − c)>[L(X>X)−1L>]−1(Lβ̂ − c)/q
RSS(M)/(n− p− 1)

. (2)

Exercise 6.4. Under the hypothesis Lβ = c, what distribution does this quantity (2) follow, and why? �

Exercise 6.5. Express the hypothesis H0 : β1 = β2 = · · · = βq = 0 for q ≤ p, in the form H0 : Lβ = c. What
does (2) look like in this case? Compare with equation (9.16) in the textbook. �
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