
STAT 151A: Lab 3

Billy Fang

15 September 2017

Feedback form is at the same place: https://goo.gl/forms/fKjLeKItix2Djg5l2. Please leave comments
and suggestions for lab, office hours, etc.

1 Review/clarification of the characters in our story

1.1 Look Ma, no models!
All you have is your data:

(yi, xi,1, . . . , xi,p), i = 1, . . . , n.

No assumption about randomness or data-generating process so far.
Goal: you want to find coefficients β0, . . . , βp such that for each i, β0 + β1xi,1 + · · ·+ βpxi,p is close to yi.
In vector form, with

y =

y1...
yn

 , X =

1 x1,1 · · · x1,p
...

...
. . .

...
1 xn,1 · · · xn,p

 , β =

β0...
βp


this is the same as wanting Xβ to be close to y element-wise.

We call these differences ei := yi − (β0 + β1xi,1 + · · · + βpxi,p) the residuals; they measure the error of this
particular choice of coefficients β in measuring the yi. In vector form, e = y −Xβ.

The “best” β will be such that Xβ is “closest” to y. How do we define closeness? Intuitively, we want all the
residuals to be small, but how do we state this quantitatively? So far, the only notion we have studied is sum of squares
of residuals. Many ways to write the same quantity:

S(β) =

n∑
i=1

e2i =

n∑
i=1

[yi − (β0 + β1xi,1 + · · ·+ βpxi,p)]
2 = e>e = ‖e‖2 = ‖Xβ − y‖2.

So, let us define β̂ as the vector that make this quantity the smallest, and call it the least squares coefficients. The
resulting fitted values for y are obtained by using these coefficients in the model.

ŷi := β̂0 + β̂1xi,1 + · · ·+ β̂pxi,p,

or in vector form,
ŷ := Xβ̂.

What do we know about β̂. By taking [partial] derivatives of S(β), we see that β̂ must satisfy the normal equations

X>Xβ̂ = X>y.

Does such a β̂ exist? When is it unique?
If X>X is invertible, then we can write the unique solution as

β̂ = (X>X)−1X>y.
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We can also talk about our favorite sum of squares quantities. Below, y := 1
n

∑n
i=1 yi.

RSS = S(β̂) = ‖y − ŷ‖2 =

n∑
i=1

(yi − ŷi)2 this is the thing we were minimizing!

RegSS = ‖ŷ − y‖2 =

n∑
i=1

(ŷi − y)2,

TSS = ‖y − y‖2.

By orthogonality / Pythagorean theorem, we have

RSS+RegSS = TSS.

Finally, the multiple correlation R2 is defined as

R2 =
RegSS

TSS
.

So far we do not have any notion of randomness, no statistical model. With just our data y and X , we can
always perform least squares (regardless of whether it is a good idea or not), e.g. throwing the data into lm().

1.2 Statistics’s Next Top Model
Without further assumptions on y and X we cannot talk about the performance of the least squares estimator. For

instance, if the relationship between the response variable and the explanatory variables are far from linear, then this
estimator will not be good.

Thus, we often consider the following model.

y = Xβ∗ + ε,

where ε is a random vector representing the noise. Here β∗ is some “true” coefficient vector. We typically think of X
as fixed/known data (sometimes denoted as conditioning on X rather than fixing X), and view our observed response
variable y as a noisy measurement of Xβ∗. The only source randomness in this model is in ε, so y, and any function
of y (such as the least squares coefficient β̂) is random.

Thus this model imposes some underlying linear relationship between y andX , but it is masked by noise. Nonethe-
less, with additional assumptions about the noise ε, we can make concrete mathematical/probabilistic statements about
the performance of estimator β̂ under this model, and do fun statistical things like tests.

Chapters 6 and 9 of Fox (as well as the recent lectures) assume

εi ∼ N(0, σ2), i = 1, . . . , n

are i.i.d. (independent and identically distributed). This can be rewritten using the multivariate Gaussian distribution.

ε ∼ Nn(0, σ
2In).

This very strong assumption is the “nicest” setting possible to study the least squares estimate. For instance, in this
setting β̂ is the MLE of β∗. Moreover, the β̂ is itself Gaussian. In weaker settings, the Gauss-Markov theorem also
gives a positive result about the performance of least squares: it is the Best Linear Unbiased Estimator (BLUE).

Whether or not such assumptions are reasonable is a deeper question, and as you drop assumptions, you are able
to say less and less about See 6.1.1 in Fox for some discussion about common assumptions about the noise.

When studying properties of the least squares estimator, it is important to distinguish between intrinsic properties
of the estimator that do not depend on a model (e.g., sum of residuals is zero, normal equations, Homework 2
Question 3, etc.), and properties of the estimator under a specific model (e.g., unbiasedness).
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2 Exercises
Exercise 2.1. Show the following.

R2 = 1− RSS

TSS
RegSS

RSS
=

R2

1−R2
.

The second equality may be useful for your homework. �

Exercise 2.2 (Fox Exercise 5.6). Why is it the case that the multiple-correlation coefficient R2 can never get smaller
when an explanatory variable is added to the regression equation? �

In the following two problems, we assume the model y = Xβ∗+εwhere ε ∼ N(0, σ2In) andX is n×(p+1), and
assume X>X is invertible. Let β̂ be the least squares coefficient, and let ŷ = Xβ̂ be the fitted values with residuals
e = y − ŷ. Let H := X(X>X)−1X>.

Exercise 2.3.

(a) What is the distribution of y?

(b) What is the distribution of β̂?

Remember that a linear transformation of a Gaussian vector is also a Gaussian vector. �

Exercise 2.4.

(a) Show e = (I −H)y.

(b) Show (I −H)y = (I −H)ε.

(c) In your homework you prove directly that H is symmetric (H> = H) and idempotent (H2 = H). Use this to
prove that I −H is also symmetric and idempotent.

(d) Show that consequently,
RSS = e>e = ε>(I −H)ε.

(e) Show that for any square matrix A,
E[ε>Aε] = σ2 tr(A),

where tr(A) = A11 +A22 + · · ·+Ann is the sum of the diagonal entries of A.

(f) Show that tr(H) = tr(Ip+1). (Hint: for any matrices A and B, we have tr(AB) = tr(BA), provided A and B
can be multiplied together.)

(g) Use part (e) to show that
E[RSS] = σ2(n− (p+ 1))

(h) What is therefore an unbiased estimator of σ2?

In your lecture notes, it is also mentioned that RSS is actually a χ2 random variable with n − p − 1 degrees of
freedom. �

3 Test time
Suggested reading: Sections 6.2.2 and 9.4.1-9.4.3 of Fox. The last section may or may not be helpful for your

homework.
See STAT151A lab03 demos.html on bCourses.
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