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Feedback form is at the same place: https://goo.gl/forms/fKjLeKItix2Djg5l2. Please leave comments
and suggestions for lab, office hours, etc.

1 Dummy variables
See STAT151A lab02 demos.html on bCourses.

2 More linear algebra

2.1 Hints for Homework 1, Question 3
Note that the problem is not asking you to prove (a) and to prove (b). [One can come up with an example where

M1M2 6= M2M1 and M1M2 6= M0.] Rather, you are asked to show that (a) and (b) are equivalent. That is, you must
show that (a) implies (b), and that (b) implies (a).

Use the properties from Lab 1. Proposition 2.2 may help too.

2.2 Intersections, sums, and complements, oh my!
Last time we defined the orthogonal complement of a subspace W .

W⊥ := {v : v>w = 0, for all w ∈W}.

That is, W⊥ consists of all vectors that are orthogonal to every vector in W .

Exercise 2.1. Show (W⊥)⊥ =W. �

If W1 and W2 are subspaces, we define

W1 +W2 = {w1 +w2 : w1 ∈W1,w2 ∈W2}.

That is, W1 +W2 is the subspace that contains all vectors that can be written as the sum of a vector from W1 with a
vector from W2.

You may remember De Morgan’s laws from set theory. If A and B are sets, and Ac denotes the complement of A,
then

(A∩B)c = Ac∪Bc,

(A∪B)c = Ac∩Bc.

It turns out that something similar holds for subspaces.

Proposition 2.2. If W1 and W2 are subspaces, then

(W1∩W2)
⊥ =W⊥1 +W⊥2 (1a)

(W1 +W2)
⊥ =W⊥1 ∩W⊥2 . (1b)
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Proof. We first prove (1b). Suppose v ∈ (W1 +W2)
⊥. If u ∈W1, then u = u+0 ∈W1 +W2, so v>u = 0. Thus, v ∈W⊥1 .

A similar argument yields v ∈W⊥2 . Thus (W1 +W2)
⊥ ⊆W⊥1 +W⊥2 .

We now prove the reverse inclusion (W1 +W2)
⊥ ⊇W⊥1 +W⊥2 . Suppose v ∈W⊥1 ∩W⊥2 . Let w1 ∈W1 and w2 ∈W2

so that w1 +w2 ∈W1 +W2. Then v>(w1 +w2) = v>w1 + v>w2 = 0+0 = 0 so v ∈ (W⊥1 +W⊥2 )⊥.
We now show that (1a) is a consequence of (1b). By taking orthogonal complements on both sides of the (1a) and

using Exercise 2.1, we see that it suffices to show

W1∩W2 = (W⊥1 +W⊥2 )⊥.

This is simply (1b) applied to W⊥1 and W⊥2 .

Side note: while set theory results sometimes have similar analogues for subspaces (like the above) that can help
with memorization and intuition, one should still be careful. See this interesting example where the inclusion-exclusion
principle for sets seems to generalize to an analogue for subspace dimensions, but fails as soon as you consider more
than two subspaces!

2.3 Gram matrix fun
The column space (a.k.a. range space, image) of an n× p matrix X , denoted C(X), is the subspace consisting of

vectors in Rn of the form Xv for some v ∈Rp. Equivalently, it is the subspace spanned by the columns of X . The rank
of X is defined to be rank(X) := dimC(X).

Exercise 2.3. For an n× p matrix X, prove that

rank(X)≤min{n, p}.

�

We say X has full rank if rank(X) = min{n, p}.
The null space (a.k.a. kernel) of an n× p matrix X , denoted N(X), is the subspace of Rp of all v ∈ Rp such that

Xv = 0. The nullity of X is defined to be null(X) := dimN(X).
The column space and null space of a matrix are subspaces of different spaces! The column space is a subspace of

Rn (the space that X maps to) while the null space is a subspace of Rp (the space that X maps from).

Exercise 2.4. Prove N(X>)⊥ =C(X). �

The rank-nullity theorem states that
rank(X)+null(X) = p,

where p is the number of columns in X .
The matrix X>X is called the Gram matrix of X .

Lemma 2.5. For any n× p matrix X ,

C(X>X) =C(X>), (2a)

N(X>X) = N(X). (2b)

Consequently,

rank(X>)
(i)
= rank(X>X)

(ii)
= rank(X).

Proof. We first prove (2b). First note that if v ∈ N(X) then v ∈ N(X>X) because X>Xv = X>0 = 0. This proves
N(X>X) ⊇ N(X). For the reverse inclusion N(X>X) ⊆ N(X), suppose v ∈ N(X>X). Then X>Xv = 0, and thus
0 = v>X>Xv = ‖Xv‖2 which implies Xv = 0.

Having proven (2b), we immediately have

null(X>X) = null(X).
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Combining this with the rank-nullity theorem, we have which implies

rank(X>X)+null(X>X) = p = rank(X)+null(X),

which implies (ii).
We now prove (2a). In the previous version of these notes, I proved this from scratch. (See gray text below.)

However, as Andrew pointed out, (2a) and (2b) are equivalent due to Exercise 2.4. Specifically, taking the orthogonal
complement of both sides of (2b) yields (2a), and vice versa.

The inclusion C(X>X) ⊆ C(X>) is immediate from the definition of column space. For the reverse inclusion C(X>) ⊆ C(X>X), suppose
v ∈ C(X>). Then by definition, v = X>u for some u. Now recall that u has a unique decomposition into u = u′ + u′′ where u′ ∈ N(X>) and
u′′ ∈ N(X>)⊥. Note that Exercise 2.4 implies u′′ ∈C(X). Thus u′′ = Xw for some w. Then we have

v = X>u = X>u′+X>u′′ = 0+X>u′′ = X>Xw,

which proves v ∈C(X>X).
Having proved (2a), we immediately have equality (i).

Proposition 2.6. Let X be an n× p matrix. There always exists a solution β to the normal equation

X>Xβ = X>y.

The solution is unique if and only if rank(X) = p.

Proof. The existence of a solution is an immediate consequence of (2a). The uniqueness of a solution is equivalent to
the p× p matrix X>X being invertible, which is equivalent to rank(X>X) = p, which by Lemma 2.5 is equivalent to
rank(X) = p.

Exercise 2.7. What situations can cause rank(X)< p? �
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