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1 Superposition

Suppose you are an owner of a shop. Women arrive to your shop according to a Poisson process
with rate A (e.g., A = 4 women/hour). Similarly, men arrive to your shop according to a Poisson
process with rate p. The two processes are independent.

If we combine the two processes into one (that is, we consider the process of all arrivals regardless
of gender), then this combined process is also a Poisson process, and its rate is \ + p.

The rate part of this statement is intuitive: if on average 4 women arrive per hour, and 3 men
arrive per hour (and the arrivals of men and women are independent), then we have on average 7
customers per hour. The fact that the combined process is a Poisson process is the non-obvious
part.

Theorem 1 (Superposition). If we have two independent Poisson processes with rates A\ and i
respectively, then the combined process of the arrivals from both processes is a Poisson process
with rate X + L.

Proof. To show that the combined process N is a Poisson process with rate A\ + u, we need to
show that a) the number of total arrivals N () in an interval I of length ¢ follows a Pois((\ + p)t)
distribution, and b) the numbers of total arrivals N (1), ..., N(I;) in disjoint intervals I, ..., Iy
are independent.

For a), simply note that N(/) can be written as Ny(/) + Ny(I), where N; and N, are the two
original Poisson processes; that is, the number of total arrivals in interval [ is the sum of the
number of arrivals from the first process and the number of arrivals from the second process.
We know N;(I) ~ Pois(At) and Ny(I) ~ Pois(ut) and the two are independent. Using an
important property of Poisson random variables (see page 226 of the textbook), we have N (I) ~
Pois(At 4 ut) = Pois((A + p)t).

For b), note that if Iy, ..., I} are disjoint, then Ny(Iy),..., Ni(Ix), Na(11),. .., Nao(I}) are all in-
dependent, so in particular, Ny (I;) + No(1y), ..., N1(Iy) + Na(Iy) are independent. O

2 Thinning

To avoid confusion in notation in what follows, we will take A = pa and pr = (1 — p)a so that the
above result states that combining two independent Poisson processes with respective rates pa and
(1 — p)a yields a Poisson process with rate «.




Note that in the combined process, we did not keep track of gender; we just had a Poisson process
of customer arrivals. If we retain the labeling of the customers as female (Type 1) or male (Type
2), we can say something stronger than the above result. This combined process (with the labels)
is the same as if we just started with a Poisson process with rate «, and flipped a coin to choose the
label (type/gender) of each arrival independently.

Theorem 2 (Thinning). The following two labeled Poisson processes have the same distribution.
(i) Take two independent Poisson processes with respective rates pa and (1 — p)«, and combine
them into a single process of arrivals from both processes. Each arrival is labeled Type 1 if|
it came from the first process, and Type 2 if it came from the second process.
(ii) Take a Poisson process with rate o, and for each arrival (independently of other arrivals) flip
a p-biased coin and label the arrival as Type 1 (heads) or Type 2 (tails).
An alternative statement: if we follow procedure (ii) and create one process consisting of only
the Type 1 arrivals, and another consisting of only the Type 2 arrivals, then these two resulting
processes are independent Poisson processes with respective rates poc and (1 — p)a.

The value of the rates is intuitive: if on average you get 8 customers per hour, and for each customer
you get to decide what gender they are with a 1/4-biased coin (female if heads, male if tails),
then on average you will have 2 female customers per hour and 6 male customers per hour. The
non-obvious part is that the female arrivals and male arrivals are each Poisson processes and are
independent.

Proof sketch. Consider some interval I of length ¢. If we follow procedure (i), then the number
of Type 1 arrivals N; (/) and Type 2 arrivals Ny(/) in interval [ follow the distributions Pois(pat)
and Pois((1 — p)at) respectively, and moreover they are independent. We will show that if we
follow procedure (ii) instead, we still get these two independent Poisson random variables.

Let N;i(I) and Ny(I) be the number of Type 1 arrivals and Type 2 arrivals respectively, under
procedure (ii). If N;(/) = j and No(I) = k, that means there must have been j + k arrivals of
the original a-Poisson process in interval /, and of these j + £ coin flips, exactly j of them were
heads.

P(N1(I) = j, No(I) = k) = P(j + k arrivals in I, and j of these j + k coin flips were heads)
= P(j + k arrivals in ) - P(j heads in j + & flips)
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= P(N1(I) = j) - P(No(1) = k).

Indeed, under procedure (ii), the joint distribution of Ny (1) and Ny (1) are two independent Poisson
random variables with parameters pat and (1 — p)at respectively. [



3 Application

Let us return to our earlier notation: A = pa and © = (1 — p)a is equivalent to &« = A + p and
D= ﬁ Thus, the above result shows that if we combine two independent Poisson processes with
respective rates A and p (while retaining labels marking which process each arrival originally came
from), then we can instead think of it as a single Poisson process of rate A 4+ p with the arrivals
labeled by independent flips of a ﬁ—biased coin.

For example, let X ~ Gamma(5,\) and Y ~ Gamma(3, 1) be independent, and suppose we
want to compute P(X < Y'). Then we can think of X as the time of the 5th arrival in a Poisson
process with rate A, and Y the time of the 3rd arrival in an independent Poisson process with rate
. If we combine the two processes, we can use it to interpret the event { X < Y'}.

{X <Y} = {5th Type 1 arrival is before the 3rd Type 2 arrival }
= {there are at most two Type 2 arrivals before the 5th Type 1 arrival }

Using the alternate interpretation of the combined Poisson process, we can just view the labeled
arrivals as a sequence of independent ﬁ—biased coin flips, and we simply want the probability
of < 2 tails before the 5th heads. This probability can be computed using the negative binomial
distribution.
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